[1]Bennett C H, Brassard G . Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, 1984, 175–179 [2]Chen meixiang,Li Honghai,Huang Zhiping,et al.Teleportation of a three-particle W state without the Bell-state Measurement[J].Chinese Journal of quantum Electronics(量子电子学报),2006,23(3):393(in Chinese)[3] Xi Yongjun,Fang Jianxing,Zhu Shiqun,et ai.Probabilistic teleportation of an arbitraty three-particle entangled state via three pairs partly entangled particles[J].Chinese Journal of quantum Electronics(量子电子学报),2006,23(1):61(in Chinese)[4]Ji Xin ,Zhang Shou. Teleportation of the three-particle entangled state by the two EPR pairs[J].Chinese Journal of quantum Electronics(量子电子学报),2006,23(6):816(in Chinese)[5]Zha Xinwei.Expansion of orthogonal complete set and transformation operator in teleportation of three-particle entangled state[J].Chinese Journal of quantum Electronics(量子电子学报),2007,24(2):179(in Chinese)[6]Bennett, C H, Brassard G, Crépeau C, Jozsa R, Peres A,Wootters W K. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys Rev Lett, 1993,70(13):1895–1899 [7]Furusawa A, S?rensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S. Unconditional quantum teleportation. Science, 1998,282(5389): 706–709 [8]Zhang Z J,Man Z X.Many-agent controlled teleportation ofmulti-qubit quantum information. Phys Lett A ,2005,341(1–4):55–59 [9]Zhang W, Liu, Y M, Liu J, Zhang Z J. Teleportation of arbitrary unknown two atom state with cluster state via thermal cavity. Chin Phys. B ,2008,17(9): 3203–3208 [10]Zhang Z Y, Liu Y M, Zuo X Q, Zhang W, Zhang Z J. Transformation operator and criterion for perfectly teleporting arbitrary three-qubit state with six-qubit channel and Bell-state measurement. Chin Phys Lett,2009,26(12):120303 [11]Tsai C W, Hwang T. Teleportation of a pure EPR state via GHZ-like state. Int. J. Theor. Phys 2010,49(8):1969–1975 [12]Bostroem K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett,2002,89(18): 187902 ,[13]Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys Rev A,2003, 68(4):042317 ,[14]Man Z X, Zhang Z J, Li Y. Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin Phys Lett,2005, 22(1):18–21 ,[15]Zhan Y B, Zhang L L, Zhang Q Y. Quantum secure direct communication by entangled qutrits and entanglement swapping. Opt Commun, 2009, 282(23): 4633–4636 ,[16]Yang C W, Tsai C W, Hwang T. Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci. China Ser. G: Phys Mech Astron, 2011,54(3):L496–501 ,[17]Deng F G, Long G L, and Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317-042323.[18]Hillery M, Buzek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999,59(3): 1829–1834 [19]Xiao L, Long G L, Deng F G , Pan J W. Efficientmultiparty quantum secret sharing schemes. Phys Rev A , 2004,69(5):052307 [20]Zhang Z J, Man Z X. Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys Rev A, 2005,72(2):022303 [21]Deng F G , Long G L, Zhou H Y. An efficient quantum secret sharing scheme with Einstein–Podolsky–Rosen pairs. Phys Lett A, 2005,340(1–4): 43–50 [22]Deng F G , Zhou H Y , Long G L. Circular quantum secret sharing. J. Phys. A: Math. Gen, 2006,39(45):14089–14099 [23]Han L F, Liu Y M, Liu J , Zhang Z J. Multiparty quantum secret sharing of secure direct communication using single photons. Opt Commun., 2008, 281(9): 2690–2694 [24]Deng F G , Li X H, Zhou H Y. Efficient high-capacity quantum secret sharing with two-photon entanglement. Phys Lett A, 2008,372(12):1957–1962[25]Sun Y, Wen Q Y, Gao F, Chen X , Zhu F C. Multiparty quantum secret sharing based on Bell measurement. Opt. Commun., 2009,282(17): 3647–3651 [26]Shi R H, Huang L S, Yang W, Zhong H. Multiparty quantum secret sharing with Bell states and Bell measurements. Opt. Commun.,2010,283(11):2476–2480 [27]Zhu Aidong,Zhang Shou.Quantum key distribution and controlled quantum direct communication applying product state of qutrit[J].Chinese Journal of quantum Electronics(量子电子学报),2007,24(3):316(in Chinese)[28]Deng F G, Long G L.Controlled order rearrangement encryption for quantum key distribution, Phys Rev A,2003, 68: 042315. [29]Deng F G, Long L. Bidirectional quantum key distribution protocol with practical faint laser pulses, Phys Rev A ,2004, 70:012311.[30]Li X H, Deng F G, Zhou H Y.Efficient quantum key distribution over a collective noise channel, Phys Rev A ,2008, 78: 022321.[31]Chen W, Han Z F, Zhang T, Wen H, Yin Z Q, Xu F X, Wu Q L, Liu Y, Zhang Y, Mo X F, Gui Y Z, Wei G, Guo G C.Field experiment on a ”star type” metropolitan quantum key distribution network, IEEE Photonics Tech. Lett., 2009, 21, pp. 575-577.[32]Yang Y G, Wen Q Y. An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys A: Math. Theor. 2009, 42(5): 055305[33]Chen X B , Xu G, Niu X X., Wen Q Y, Yang Y X. An efficient protocol for the private comparison of equal information based on the triplet entangled state and single particle measurement. Opt. Commun. 2010,283(7): 1561–1565 [34]Yang Y G, Wen Q Y. An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 2009,42(5), 055305[35]Chen X B , Xu G, Niu X X , Wen Q Y, Yang Y X. An efficient protocol for the private comparison of equal information based on the triplet entangled state and single particle measurement. Opt. Commun. 2010,283(7):1561–1565 [36]Greenberger D M , Horne M A , Zeilinger A. Going beyond Bell’s theorem. Arxiv preprint arXiv: 2007,0712.0921 [37]Shi R H, Zhong H. Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf Process .2013,DOI 10.1007/s11128-012-0443-2 |