[1] Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing[C]. IEEE Conference Computers, Systems Signal Processing, 1984: 175-179. [2] He X L, Yang C P. Deterministic transfer of multiqubit GHZ entangled states and quantum secret sharing between different cavities[J]. Quantum Information Processing, 2015, 14(12): 4461-4474. [3] Mao Qianping, Zhao Shengmei, Wang Le, et al. Measurement-device-independent quantum key distribution based on wavelength division multiplexing technology[J]. Chinese Journal of Quantum Electronics(量子电子学报), 2017, 34(1): 46-53(in Chinese). [4] Chen Xiaofeng, Lin Song. Key management scheme for wireless sensor networks based on quantum cryptography[J]. Chinese Journal of Quantum Electronics(量子电子学报), 2018, 35(4): 455-460(in Chinese). [5] Wang Le, Zou Li, Zhao Shengmei. A novel quantum secret sharing scheme with a trustful center[J]. Chinese Journal of Quantum Electronics(量子电子学报), 2014, 31(5): 591-598(in Chinese). [6] Zhu Z C, Hu A Q, Fu A M. Two new Controlled not Gate Based Quantum Secret Sharing Protocols without Entanglement Attenuation[J]. International Journal of Theoretical Physics, 2016, 55(5):2342-2353 . [7] Liu F, Su Q, Wen Q Y. Eavesdropping on multiparty quantum secret sharing scheme based on the phase shift operations[J]. International Journal of Theoretical Physics, 2014, 53(5): 1730-1737. [8] Chan P, Slater J A, Lucio-Martinez I, et al. Modeling a measurement-device-independent quantum key distribution system[J]. Optics Express, 2014, 22(11): 12716-12736. [9] Yan Long, Sun Hao, Zhao Shengmei. Research on device-independent quantum key distribution protocol for photon orbital angular momentum measurement using decoying state[J]. Signal Processing(信号处理), 2014, 30(11): 1275-1278(in Chinese). [10] Zhu F, Zhang C H, Liu A P, et al. Enhancing the performance of the measurement-device-independent quantum key distribution with heralded pair-coherent sources[J]. Physics Letters A, 2016, 16(20): 1-6. [11] Zhou J, Xu F, Sun E, et al. Coherent optical interleaved SC-FDM uplink scheme for long-reach passive optical network[J]. IEEE Photonics Journal, 2016, 8(2): 1-8. [12] Lim C C W, Walenta N, Legre M, et al. Random variation of detector efficiency: A countermeasure against detector blinding attacks for quantum key distribution[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(3): 192-196. [13] Tang X, Wonfor A, Kumar R, et al. Quantum-safe metro network with low-latency reconfigurable quantum key distribution[J]. Journal of Lightwave Technology, 2018, 36(22): 5230-5236. [14] Lin J, Yang C W, et al. Intercept-resend attacks on semi-quantum secret sharing and the improvements[J]. International Journal of Theoretical Physics, 2013, 52(1): 156-162. [15] Shi J, Shi R, Peng X, et al. Distributed quantum packet transmission in non-maximally entangled relay system[J]. International Journal of Theoretical Physics, 2015, 54(4): 1128-1141. [16] Wen, Q Y, Gao F, et al. Participant attack and improvement to multiparty quantum secret sharing based on GHZ states[J]. International Journal of Theoretical Physics, 2013, 52(1): 293-301. [17] Zhang K J, Jia H Y. Cryptanalysis of a quantum proxy weak blind signature scheme[J]. International Journal of Theoretical Physics, 2015, 54(2): 582-588. |