量子电子学报 ›› 2020, Vol. 37 ›› Issue (5): 580-600.
Basic principle and technical progress of Doppler wind lidar
出版日期:
2020-09-28
发布日期:
2020-10-09
通讯作者:
E-mail: wyj@aiofm.ac.cn
作者简介:
储玉飞( 1987 - ), 安徽滁州人, 博士生, 主要从事激光雷达技术方面的研究。E-mail: chuyufei@mail.ustc.edu.cn
基金资助:
储玉飞1,2, 刘东1,2, 王珍珠1,2, 吴德成1, 邓迁1,2, 李路1,2, 庄鹏1,2, 王英俭1,2∗
Published:
2020-09-28
Online:
2020-10-09
摘要: 风场是水循环、碳循环、气溶胶、污染气体及雾霾的主要动力, 也是大气湍流、风能发电厂、数值天气 预报和环保等领域的重要参数。多普勒激光雷达利用多普勒效应, 通过探测发射激光的频率漂移, 可以获得大气 风场参数, 因此在众多领域具有重要的应用。首先介绍了多普勒效应和测风激光雷达技术的基本原理, 然后分别 从原理和实际应用方面对多普勒测风激光雷达进行了分类。进而系统介绍了相干探测与非相干探测、连续光探 测与脉冲光探测、单边缘技术与双边缘技术、FP 条纹与Fizeau 条纹技术、VAD 与DBS 扫描等相关技术。最后 简要地介绍了地基、机载与星载测风激光雷达的实例, 以及测风激光雷达新技术, 并对多普勒测风激光雷达技术 进行了总结与展望。
中图分类号:
储玉飞, 刘东, 王珍珠, 吴德成, 邓迁, 李路, 庄鹏, 王英俭, ∗. 多普勒测风激光雷达的基本原理与技术进展[J]. 量子电子学报, 2020, 37(5): 580-600.
Basic principle and technical progress of Doppler wind lidar. Basic principle and technical progress of Doppler wind lidar[J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 580-600.
[1] | Fujii T D, Fukuchi T. Laser Remote Sensing [M]. Taylor & Francis, 2005: 338-342. |
[2] | Jia Xiaodong. Development of 1.55 μm Coherent Wind Lidar Prototype (1.55 μm 相干测风激光雷达样机的研制) [D]. Hefei: |
Doctorial Dissertation of University of Science and Technology of China, 2015 (in Chinese). | |
[3] | Li Mingzhuo. Experimental Research on 1.55 μm Optical Heterodyne Receiving in Coherent Wind Laser Radar (相干激光测 |
风雷达中1.55 μm 光外差接收实验研究) [D]. Harbin: Master Thesis of Harbin Institute of Technology, 2007 (in Chinese). | |
[4] | Huffaker R M, Hardesty R M. Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems |
[J] | Proceedings of the IEEE, 1996, 84(2): 181-204. |
[5] | Huffaker R M. Laser Doppler detection systems for gas velocity measurement [J]. Applied Optics, 1970, 9(5): 1026. |
[6] | Huffaker R M, Jelalian A V, Thomson J A L. Laser-Doppler system for detection of aircraft trailing vortices [J]. Proceedings |
of the IEEE, 1970, 58(3): 322-326. | |
[7] | Brashears M R, Hallock J N. The measurement of wind shear and wake vortices by laser Doppler velocimetry [C]. 7th Conference |
on Aerospace and Aeronautical Meteorology, 1977. | |
[8] | Schwiesow R L, Cupp R E, Sinclair P C, et al. Waterspout velocity measurements by airborne Doppler lidar [J]. Journal of |
Applied Meteorology, 2010, 20(4): 341-348. | |
[9] | Intrieri J M, Brewer W A, Eberhard W L. Performance of the Mini-MOPA, CO2 Doppler, cloud lidar at CART [C]. ARM |
Science Team Meeting, 1997: 347-349. | |
[10] | Pearson B G, Collier C G. A pulsed coherent CO2 lidar for boundary-layer meteorology [J]. Quarterly Journal of the Royal |
Meteorological Society, 1999, 125(559): 2703-2721. | |
[11] | Kane T J, Kozlovsky W J, Byer R L. Coherent laser radar at 1.06 μm using Nd: YAG lasers [J]. Optics Letters, 1987, 12(4): |
23 | 9-241. |
[12] | Kavaya M J, Henderson S W, Magee J R, et al. Remote wind profiling with a solid-state Nd: YAG coherent lidar system [J]. |
Optics Letters, 1989, 14(15): 776-778. | |
[13] | Hawley J G, Targ R, Henderson S W, et al. Coherent launch-site atmospheric wind sounder: Theory and experiment [J]. |
Applied Optics, 1993, 32(24): 4557-4568. | |
[14] | Hawley J G, Targ R, Bruner R S, et al. Performance of a 1μm, 1 joule coherent launch site atmospheric wind sounder [C]. |
Proceedings of SPIE, 1992, 1694: 110-120. | |
[15] | Henderson S W, Hale C P, Magee J R, et al. Eye-safe coherent laser radar system at 2.1 μm using Tm, Ho:YAG lasers [J]. |
Optics Letters, 1991, 16(10): 773-775. | |
[16] | Wulfmeyer V, Randall M, Brewer A, et al. 2 μm Doppler lidar transmitter with high frequency stability and low chirp [J]. |
Optics Letters, 2000, 25(17): 1228-1230. | |
[17] | Grund C J, Banta R M, George J L, et al. High-resolution Doppler lidar for boundary layer and cloud research [J]. Journal of |
Atmospheric Oceanic Technology, 2001, 18(3): 376-393. | |
[18] | Phillips M W, Henderson S W, Poling M, et al. Coherent LIDAR development for Doppler wind measurement from the |
International Space Sation [C]. Proceedings of SPIE, 2001, 4153: 376-384. | |
[19] | Kameyama S, Yanagisawa T, Ando T, et al. Development of wind sensing coherent Doppler LIDAR at Mitsubishi Electric |
Corporation from late 1990s to 2013 [C]. Proceedings of the 17th Coherent Laser Radar Conference, Barcelona, Spain, 2013: | |
12 | -13. |
[20] | Engelmann R, Wandinger U, Ansmann A, et al. Lidar observations of the vertical aerosol flux in the planetary boundary layer |
[J] | Journal of Atmospheric Oceanic Technology, 2008, 25(8): 1296-1306. |
[21] | Bluestein H B, French M M, Houser J B, et al. A summary of data collected during VORTEX-2 by MWR-05XP/TWOLF, |
UMass X-Pol, and the UMass W-band radar [C]. 25th Conference on Severe Local Storms, Denver, Colorado, 2010. | |
[22] | Hannon S, Barr K, Novotny J, et al. Large scale wind resource mapping using a state-of-the-art 3D scanning lidar [C]. Wind |
Power 2008, Houston, Texas, USA, 2008. | |
[23] | Hannon S M, Vetorino S R, Pelk J V. Next generation Doppler lidar sensor at 1.6 μm [C]. Proceedings of the 14th Coherent |
Laser Radar Conference, Snowmass, Colorado, USA, 2007: 59-62. | |
[24] | Kameyama S, Sakimura T, Watanabe Y, et al. Wind sensing demonstration of more than 30 km measurable range with a 1.5 |
μm coherent Doppler lidar which has the laser amplifier using Er, Yb: glass planar waveguide [C]. Proceedings of SPIE, 2012, | |
85 | 26: 85260E. |
[25] | Zhong Zhiqing, Sun Dongsong, Wang Bangxin, et al. Doppler wind lidar based on Fabry-Perot etalon [J]. Infrared and Laser |
Engineering (红外与激光工程), 2006, 35(6): 687-690 (in Chinese). | |
[26] | Li Dongmei, Zheng Yongchao, Pan Jiangyan, et al. Index system of coherence Doppler wind lidar [J]. Optical Technique (光 |
学技术) | , 2010, 36(6): 880-884 (in Chinese). |
[27] | Liu J Q, Zhu X P, Zhou J, et al. Development of a coherent Doppler lidar to measure atmosphere windshear [C]. Quantum |
Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM), IEEE, 2011: 843-845. | |
[28] | Liu J Q, Zhu X L, Zhu X P, et al. Development of all-fiber coherent Doppler lidar to measure atmosphere wind speed [C]. 26th |
International Laser Radar Conference, Porto Heli, Peloponnesus, Greece, 2012: 199-202. | |
[29] | Diao W F, Zhang X, Liu J Q, et al. All fiber pulsed coherent lidar development for wind profiles measurements in boundary |
layers [J]. Chinese Optics Letters, 2014, 12(7): 072801. | |
[30] | Liu J Q, Zhu X P, Diao W F, et al. All-fiber airborne coherent Doppler lidar to measure wind profiles [C]. 27th International |
Laser Radar Conference, New York City, New York, USA, 2015. | |
[31] | Wu S H, Yin J P, Liu B Y, et al. Characterization of turbulent wake of wind turbine by coherent Doppler lidar [C]. Proceedings |
of SPIE, 2014, 9262: 92620H. | |
[32] | http://www.darsunlaser.com/a/news/91.html. |
[33] | Bu Zhichao, Guo Pan, Chen Siying, et al. Optimization analysis of telescope aperture and truncation factor of coherent LIDAR |
[J] | Infrared and Laser Engineering (红外与激光工程), 2013, 43(3): 694-699 (in Chinese). |
[34] | Ke Tianmei, Tan Tu, Hou Zaihong, et al. Research on technology of 1.55 μm all-fiber coherent wind lidar [J]. Journal of |
Atmospheric and Environmental Optics (大气与环境光学学报), 2018, 13(5): 48-53 (in Chinese). | |
[35] | Liu B, Peng Z X. Design of a non-scanning lidar for wind velocity and wind velocity and direction measurement [C]. 27th |
International Laser Radar Conference, New York City, New York, USA, 2015. | |
[36] | Foot C J. Atomic Physics (Oxford Master Series in Atomic, Optical and Laser Physics) [M]. Oxford University Press, 2013. |
[37] | Brown A, Thomas E L, Foord R, et al. Measurements on a distant smoke plume with a CO2 laser velocimeter [J]. Journal of |
Physics D: Applied Physics, 1978, 11(2): 137. | |
[38] | Reitebuch O. Atmospheric Physics [M]. Berlin Heidelberg: Springer, 2012: 487-507. |
[39] | Zhang Riwei, Sun Xuejin, YanWei, et al. Simulation of frequency discrimination for spaceborne Doppler wind lidar (II): Study |
on the retrieval of atmospheric wind speed for Rayleigh channel based on Fabry-Perot interferometer [J]. Acta Physica Sinica | |
(物理学报), 2014, 63(14): 140703 (in Chinese). | |
[40] | Tian Xiaoming, Liu Dong, Xu Jiwei, et al. Review of lidar technology for atmosphere monitoring [J]. Journal of Atmospheric |
and Environmental Optics (大气与环境光学学报), 2018, 13(5): 401-416 (in Chinese). | |
[41] | Liu Z S,Wu D, Liu J T, et al. Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering |
by Doppler lidar with an iodine filter [J]. Applied Optics, 2002, 41(33): 7079-7086. | |
[42] | Shen Fahua, Yue Bing, Xia Haiyun, et al. Method of wind velocity inversion for wind lidar based on Fizeau fringe technique |
[J] | Infrared and Laser Engineering (红外与激光工程), 2007, 36(6): 834-837 (in Chinese). |
[43] | Shen Fahua, Sun Dongsong, Chen Min, et al. Analysis on the factors influencing measure precision of wind lidar based on |
Fizeau interferometer [J]. Journal of Atmospheric and Environmental Optics (大气与环境光学学报), 2006, 1(4): 53-58 (in | |
Chinese). | |
[44] | Tan Linqiu, Hua Dengxin, Wang Li, et al. Wind velocity retrieval and field widening techniques of fringe-imaging Mach- |
Zehnder interferometer for Doppler lidar [J]. Acta Physica Sinica (物理学报), 2014, 63(22): 191-199 (in Chinese). | |
[45] | Peng Z, Wang B, Tan M, et al. Design and simulation of 532 nm Rayleigh-Mie Doppler wind lidar system [C]. Seminar on |
Novel Optoelectronic Detection Technology and Application, 2018: 293. | |
[46] | Spuler S M, Richter D, Spowart M P, et al. Optical fiber-based laser remote sensor for airborne measurement of wind velocity |
and turbulence [J]. Applied Optics, 2011, 50(6): 842-851. | |
[47] | Straume-Lindner A G, Elfving A, Wernham D, et al. ESA’s spaceborne lidar mission ADM-Aeolus; Recent achievements and |
preparations for launch [J]. EPJ Web of Conferences, 2016, 119: 01001. | |
[48] | Reitebuch O, Lemmerz C, Nagel E, et al. The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN |
on ADM-aeolus. Part I: Instrument design and comparison to satellite instrument [J]. Journal of Atmospheric & Oceanic | |
Technology, 2009, 26(12): 2501-2515. | |
[49] | Anders E. Aeolus laser shines light on wind [OL]. ESA, 2018, URL: http://m.esa.int/Our−Activities/Observing−the−Earth/Aeolus/ |
Aeolus−laser− shines−light−on−wind. | |
[50] | Xia H, Shangguan M, Wang C, et al. Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric |
boundary layer [J]. Optics Letters, 2016, 41(22): 5218. | |
[51] | Shangguan M, Xia H, Wang C, et al. Dual-frequency Doppler lidar for wind detection with a superconducting nanowire |
single-photon detector [J]. Optics Letters, 2017, 42(18): 3541. | |
[52] | Liu Yanwen, Sun Xuejin, Zhang Chunliang, et al. The algorithm of frequency discrimination of incoherent Doppler wind lidar |
[J] | Laser & Infrared (激光与红外), 2018, 48(10): 1204-1213 (in Chinese). |
[53] | Zhou Yongsheng, Ma Xunpeng, Zhao Yiming, et al. Frequency estimation of the weak signal of the coherent wind lidar [J]. |
Infrared and Laser Engineering (红外与激光工程), 2018, 47(3): 0306002 (in Chinese). | |
[54] | Zhang Yinchao, Li Lili, Guo Pan, et al. Simulation research on coherent wind lidar bandpass sampling method [J]. Transaction |
of Beijing Institute of Technology (北京理工大学学报), 2018, 38(2): 211-215 (in Chinese). | |
[55] | Cheng Xing, Li Zhen, Zhuang Zibo et al. A small scale wind shear detection algorithm of modified F-factor for wind-profiling |
lidar [J]. Optics and Precision Engineering (光学精密工程), 2018, 26(4): 927-935 (in Chinese). | |
[56] | Liu Yanwen, Sun Xuejin, Zhang Chunliang, et al. The algorithm of frequency discrimination of incoherent Doppler wind lidar |
[J] | Laser & Infrared (激光与红外), 2018, 48(10): 14-23 (in Chinese). |
[57] | Wang Guining, Liu Bingyi, Feng Changzhong, et al. Data quality control method for VAD wind field retrieval based on |
coherent wind lidar [J]. Infrared and Laser Engineering (红外与激光工程), 2018, 47(2): 023002 (in Chinese). |
[1] | 潘晓凯 , 姜梦杰, , 王 东, , 吕旭阳, , 蓝诗琪 , , 卫英东 , , 何 源, , 郭书广, , 陈平平 , 王 林∗ , 陈效双 , 陆 卫. 红外-太赫兹光电探测器应用及前沿变革趋势[J]. 量子电子学报, 2023, 40(2): 217-237. |
[2] | 龚文林∗ , 陈明亮 , 韩申生∗. 激光关联成像雷达研究进展与展望[J]. 量子电子学报, 2022, 39(6): 835-850. |
[3] | 马慧敏 ∗ , 檀 磊 , 张京会 , 张鹏飞 , 宁孝梅 , 刘海秋 , 高彦伟 . 基于深度学习的合成孔径成像系统共相误差检测研究综述[J]. 量子电子学报, 2022, 39(6): 927-941. |
[4] | 曹也, 程亮亮, 杨昊, 方志远, 李路, 邓旭, 邢昆明, 王邦新, 谢晨波, . 基于FPGA 的激光雷达数据采集卡设计[J]. 量子电子学报, 2022, 39(4): 620-631. |
[5] | 刘晨凯, 胡明勇∗, 李昭阳, 孙东起, 封志伟, 蔡晓波. 一种多波长激光雷达光学系统设计[J]. 量子电子学报, 2021, 38(6): 806-814. |
[6] | 李仕春, ∗, 黄祖鑫, 石东东, 辛文辉, 宋跃辉, 高 飞, 华灯鑫, ∗. 机载近红外偏振激光雷达探测过冷云研究[J]. 量子电子学报, 2021, 38(6): 872-879. |
[7] | 成 远, 张 振, 华灯鑫, 宫振峰, 梅 亮∗. NO2 差分吸收激光雷达技术研究进展[J]. 量子电子学报, 2021, 38(5): 580-592. |
[8] | 张钦伟, 曹连振∗, 刘 霞, 杨 阳, 赵加强, 李英德. 光子纠缠态在 non-Kolmogorov 大气湍流中纠缠退化的研究[J]. 量子电子学报, 2021, 38(4): 496-503. |
[9] | 冷坤, 杨云涛, 谭哲, 龚艳春, 武文远∗. 基于支持向量机的激光大气传输效能评估方法[J]. 量子电子学报, 2020, 37(5): 547-555. |
[10] | 杨勇, 程学武, 杨国韬, 薛向辉, 李发泉∗. 高层大气探测激光雷达研究进展[J]. 量子电子学报, 2020, 37(5): 566-579. |
[11] | 周正兰, 周源, 徐华锋, 屈军∗. 特殊关联部分相干光研究进展[J]. 量子电子学报, 2020, 37(5): 615-632. |
[12] | 习锋杰, 杨轶, 靖旭, 杜少军, 许晓军. 水平蒙气色差对光轴标定的影响[J]. 量子电子学报, 2020, 37(4): 386-391. |
[13] | 余佳益, 蔺淑琴, 徐颖, 朱新蕾, 王飞, 蔡阳健, ∗. 特殊关联结构部分相干光束大气传输研究进展[J]. 量子电子学报, 2020, 37(4): 392-408. |
[14] | 王英俭, ∗, 时东锋, . 大气对光学成像影响及校正技术[J]. 量子电子学报, 2020, 37(4): 409-417. |
[15] | 胡帅, ∗, 刘磊, ∗ 刘西川, 高太长, . 大气粒子多角度散射特性测量技术研究进展[J]. 量子电子学报, 2020, 37(4): 477-496. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||