量子电子学报 ›› 2024, Vol. 41 ›› Issue (3): 473-484.doi: 10.3969/j.issn.1007-5461.2024.03.007

• "LIBS 关键技术与应用"专辑 • 上一篇    下一篇

SuperCam-LIBS光谱定量分析火星锰元素

苏鸣宇1,2,3, 辛艳青1,2,3, 刘长卿1,2,3, 凌宗成1,2,3*   

  1. ( 1 山东大学空间科学与物理学院, 山东 威海 264209; 2 山东大学空间科学研究院, 山东 威海 264209; 3 山东省光学天文与日地空间环境重点实验室, 山东 威海 264209 )
  • 收稿日期:2023-12-18 修回日期:2024-03-11 出版日期:2024-05-28 发布日期:2024-05-28
  • 通讯作者: E-mail: zcling@sdu.edu.cn E-mail:E-mail: zcling@sdu.edu.cn
  • 作者简介:苏鸣宇 ( 1996 - ), 山东东营人, 研究生, 主要从事行星光谱学方面的研究。E-mail: sumy@mail.sdu.edu.cn
  • 基金资助:
    国家自然科学基金 (12303067, U1931211), 国家重点研发计划 (2022YFF0711403), 山东省自然科学基金 (ZR2023QD106)

Quantitative analysis of Mn on Mars from SuperCam⁃LIBS spectral datasets

SU Mingyu 1,2,3, XIN Yanqing 1,2,3, LIU Changqing 1,2,3, LING Zongcheng 1,2,3*   

  1. ( 1 School of Space Science and Physics, Shandong University, Weihai 264209, China; 2 Institute of Space Sciences, Shandong University, Weihai 264209, China; 3 Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Weihai 264209, China )
  • Received:2023-12-18 Revised:2024-03-11 Published:2024-05-28 Online:2024-05-28

摘要: 毅力号火星车携带的SuperCam载荷可以探测火星表面锰元素等成分信息。本研究依据SuperCam团队发 布的地质标样激光诱导击穿光谱 (LIBS) 数据集, 提出了一种基于集成学习的火星锰元素定量方法。本研究首先对 LIBS光谱进行光谱降噪、去基线等预处理, 随后进行光谱反卷积和分峰拟合, 最终建立锰元素的定量方法, 实现了 锰元素的含量预测。实验评估了传统多变量定量方法 (LASSO、弹性网络) 和集成学习方法对锰元素定量精度的差 异, 发现后者的均方根误差相对于前两种传统方法分别平均下降了49% 和30%, 定量结果更接近样品真实值, 表明 基于集成学习的定量方法更适用于火星锰元素的定量反演。

关键词: 光谱学, 光谱定量方法, 激光诱导击穿光谱, 集成学习, 火星, 锰元素

Abstract: The SuperCam carried by the NASA's Perseverance rover can detect the surface material composition of Mars such as Mn. In order to determine the content of Mn on Mars, a quantitative method for Mn based on ensemble learning is proposed using the laser-induced breakdown spectroscopy (LIBS) dataset of geologic standards. A series of pre-processing such as spectral denosing and de-baselining are carried out firstly, then spectral deconvolution is performed to realize peak-fitting, and finally a quantitative method for Mn content prediction is established. The quantitative accuracy for Mn of the different quantitative methods were experimentally compared. The results show that, compared with the two traditional methods (LASSO and ElasticNet), the root-mean-square error of the proposed method based on ensemble learning is reduced by 49% and 30% on average, respectively, and the quantitative results of the new method are closer to the real values of the samples. This study shows that the ensemble learning based quantitative method is more suitable for Mars Mn quantification.

Key words: spectroscopy, spectral quantification methods, laser-induced breakdown spectroscopy, ensemble learning, Mars, Mn element

中图分类号: