| [1] Salmanogli A, Gokcen D, Gecim H S. Entanglement sustainability in quantum radar[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(6): 1-11. [2] Krelina M. Quantum technology for military applications[J]. EPJ Quantum Technology, 2021, 8(1): 24.[3] Kok P, Boto A N, Abrams D S, et al. Quantum-interferometric optical lithography: Towards arbitrary two-dimensional patterns[J]. Physical Review A, 2001, 63(6): 063407.[4] Lloyd S. Enhanced sensitivity of photodetection via quantum illumination[J]. Science, 2008, 321(5895): 1463-1465.[5] Smith III J F. Quantum entangled radar theory and a correction method for the effects of the atmosphere on entanglement[C]. Quantum information and computation VII. SPIE, 2009, 7342: 76-87.[6] 周城宏,钱卫平.量子雷达技术发展与展望[J].雷达科学与技术,2015,13(05):457-462.Zhou C H, Qian W P. Development and prospect of quantum radar technology [J]. Radar Science and Technology,2015,13(05):457-462.[7] 吴琼,柏业超,张兴敢.干涉量子雷达测量方法性能分析[J].南京大学学报(自然科学),2016,52(05):939-945.Wu Q, Bai Y C, Zhang X G. Performance analysis of interferometric quantum radar measurement method [J]. Journal of Nanjing University (Natural Science),2016,52(05):939-945.[8] 王宁宁, 谭涌波, 师正, 等. 耦合气溶胶模块的雷暴云起电模式[J]. 高原气象, 2013, 32(2): 2541-2548. WANG N N, TAN Y B, SHI Z, et al. Thunderstorm cloud electrifica tion model after coupled aerosol module[J]. Plateau Meteorology, 2013, 32(2): 2541-2548.[9] 张自嘉, 王其, 孙亚杰, 等. 大气带电粒子对电磁波的散射研究[J]. 电波科学学报, 2011, 26(4): 758-764. ZHANG Z J, WANG Q, SUN Y J, et al. Scattering of electromagnetic waves by charged partcles in atmosphere[J]. Chinese Journal of Radio Science, 2011, 26(4): 758-764. ublishing House of Electronics Industry, 2013:15-17.[10] 章博凯,聂敏,杨光等.雷暴云背景下星地量子通信链路多参数融合寻优策略[J].激光杂志,2023,44(12):1-7.Zhang B K, Nie M, Yang G et al. Multi-parameter fusion optimization strategy for satellite-based quantum communication link under thunderstorm cloud background [J]. Laser Journal,2023,44(12):1-7. [11] NIELSEN M A, CHUANG I L. 量子计算和量子信息(二)[M]. 郑大钟, 赵千川, 译. 北京: 清华大学出版社, 2005: 57-60[12] 葛鹏,葛家龙.干涉式量子雷达的关键技术[J].电子技术与软件工程,2019,(08):104-105.Ge P, Ge J L. Key technologies of interferometric quantum radar [J]. Electronic Technology and Software Engineering,2019,(08):104-105.[13] Shu W, Yi-Chong R, Rui-Zhong R, et al. Influence of atmosphere attenuation on quantum interferometric radar[J]. ACTA PHYSICA SINICA, 2017, 66(15). [14] 聂敏,张怡心,杨光,等.冰晶粒子对量子干涉雷达探测性能的影响[J].激光与光电子学进展,2020,57(13):90-98.Nie M, Zhang Y X, Yang G, et al. Effect of ice crystal particles on detection performance of quantum interference radar [J]. Advances in Laser and OptoElectronics, 2019,57(13):90-98.[15] 聂敏,王瑾,杨光,等.对流层水云对量子干涉雷达探测性能的影响及仿真[J].激光与光电子学进展,2022,59(5):74-82.Nie M, Wang J, Yang G, et al. Effect and simulation of Tropospheric water cloud on detection performance of quantum interference radar [J]. Advances in Laser and Optoelectronics,202,59(5):74-82. [16] 聂敏,张政,杨光等.层积云背景下量子干涉雷达最优平均光子数自适应策略[J].激光杂志,2024,45(01):26-32.Nie Min, Zhang Zheng, Yang Guang et al. Adaptive strategy for optimal mean photon number of quantum interference radar in Stratocumulus background [J]. Laser Journal, 2019,45(01):26-32. [17] 吴琼,柏业超,张兴敢.干涉量子雷达测量方法性能分析[J].南京大学学报(自然科学),2016,52(05):939-945.Wu Qiong, Bai Yechao, Zhang Xinggan. Performance analysis of interferometric quantum radar measurement method [J]. Journal of Nanjing University (Natural Science),2016,52(05):939-945.[18] Mandija F, Vila F. Simplified classification of atmospheric charged particles[J]. Journal of Electrostatics, 2013, 71(4): 781-784.大气带电粒子的简化[19] Kundracik F, Kocifaj M, Videen G, et al. Effect of charged-particle surface excitations on near-field optics[J]. Applied Optics, 2015, 54(22): 6674-6681. [20] Zhou Z, Zhang S, Qi J, et al. Extension of complex refractive index model and analysis of scattering properties of charged submicron spheres[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 242: 106735.[21] Zhou Y H, Shu He Q, et al.Attenuation of electromagnetic wave propagation in sandstorms incorporating charged sand particles[J]. The European Physical Journal E, 2005, 17: 181-187.[22] 张自嘉, 潘琦, 陈海秀. 带电粒子的Mie散射研究[J]. 电波科学学报, 2015, 30(3): 429-436Zhang Z J, Pan Q, Chen H X. Mie Scattering of Charged Particles[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2015, 30(3): 429-436[23] MARCO L. 量子雷达[M]. 周万幸, 吴鸣亚, 胡明春, 等, 译. 北京: 电子工业出版社, 2013: 15-17. MARCO L. Quantum Radar[M]. Translated by ZHOU W X, WU M Y, HU M C, et al. Beijing: P [24] 王强,张勇,等.基于奇相干叠加态的超分辨率量子激光雷达[J].红外与激光工程,2015, 44(9): 2569-2574.Wang Q, Zhang Y et al. Super-resolution quantum Lidar based on odd coherent superposition states [J]. Infrared and Laser Engineering, 2015, 44(9): 2569-2574.[25] 王书,任益充,饶瑞中,等.大气损耗对量子干涉雷达的影响机理[J].物理学报,2017,66(15):150301.Wang Shu, Ren Y C, Rao R Z, et al. Effect mechanism of atmospheric loss on quantum interference radar [J]. Acta Physica Sinica, 2017,66 (15):150301.[26] 王书,任益充,饶瑞中,等.大气闪烁对相干态量子干涉雷达探测性能的影响[J].中国激光,2018,45(8):242-250.Wang S, Ren Y C, Rao R Z, et al. Effect of atmospheric scintillation on detection performance of coherent state quantum interference radar [J]. Chinese Journal of Lasers, 2018,45 (8) :242-250. [27] 陶志炜,王书,等大气湍流引起的相位起伏对相干态量子雷达相位估计的影响[J].国防科技大学学报,2020.42(1):31-37.Tao Z W, Wang S, et al. Effect of phase fluctuation caused by atmospheric turbulence on phase estimation of coherent state quantum radar [J]. Journal of National University of Defense Technology,2020.42(1):31-37. |