| [1] Hasan M Z, Kane C L.Colloquium: Topological Insulators. Reviews of Modern Physics, 2010, 82(4):3045–3067.
[2]Qi X L, Zhang S C. Topological Insulators and Superconductors. Reviews of Modern Physics, 2011, 83(4), 1057–1110.
[3] Kane C L, Mele E J.Quantum Spin Hall Effect in Graphene.Physical Review Letters, 2005, 95(22), 226801
[4] Wang Y, Lu Y H, Gao J, Chang Y J, Tang, H., Jin X M.Topological Phononic Insulators,Physical Review B, 2021, 103(1), 014110.
[5] Cheng W J, Wang Z H, Liu Y X. Topology and retardation effect of a giant atom in a topological waveguide .Physical Review A, 2022, 106(3), 033522.
[6] Su, W P, Schrieffer J R, Heeger A J.Solitons in Polyacetylene,Physical Review Letters, 1979, 42(25), 1698–1701.
[7] Teo J C Y, Kane C L.Topological Defects and Gapless Modes in Insulators and Superconductors.Physical Review B, 2010, 82(11), 115120.
[8] Ganeshan S, Sun K, Sarma S D.Topological Zero-Energy Modes in Gapless Commensurate Aubry-André-Harper Models.Physical Review Letters, 2013,110(18), 180403.
[9] Andrea, B. R., et al.Topological Optical Waveguiding in Silicon and the Transition between Topological and Trivial Defect States.Physical Review Letters, 2016, 116(16), 163901.
[10] Jukka I V, Teemu O. Chiral Topological Phases and Fractional Domain Wall Excitations in One-Dimensional Chains and Wires.Physical Review Letters, 2011, 107(16), 166804.
[11] Kane C L, Lubensky T C.Topological Boundary Modes in Isostatic Lattices.Nature Physics, 2014, 10(1), 39–45.
[12] Cheng Q,Pan Y, Wang Q, Li T, Zhu S. Topologically protected interface mode in plasmonic waveguide arrays[J]. Laser & Photonics Reviews, 2015, 9(4), 392–398.
[13] Pearson C J, Barford W, Bursill R J.Topological Insulators in the Presence of Disorder.Physical Review B, 2011, 83(19), 195105.
[14] Sattwik D M, Miguel F P, Rahul T.Decoherence-induced self-dual criticality in topological states of matter.PRX Quantum, 2024, 5(2), 020317.
[15] Hao D D, Wang L, Lu X D, Cao X Z, Jia S T, Hu Y, Xiao Y H. Topological Atomic Spin Wave Lattices by Dissipative Couplings.Physical Review Letters, 2023, 130(15), 153602.
[16]Chen J Z, Shi A Q, Peng Y C,Peng P, Liu J J.Hybrid Skin-Topological Effect Induced by Eight-Site Cells and Arbitrary Adjustment of the Localization of Topological Edge States.Chinese Physics Letters ,2024,41(5), 037103
[17]Zhu X L, Peng T, Lyu F, Cao W, Hou Y, Xiong R, Wang Z Y.Non-Hermitian quasicrystalline topological insulators.Physical Reveiew B,2025,111(3), 035305
[18]Peng Y C, Shi A Q,Peng P, Liu J J.Pseudospin-induced asymmetric field in non-Hermitian photonic crystals with multiple topological transitions. Physical Reveiew B,2025 111(8), 085148
[19]Shi A Q, Bao L S,Peng P, Ning J Y, Wang Z N, Liu J J.Non-Hermitian Floquet higher-order topological states in two-dimensional quasicrystals. Physical Reveiew B,2025,111(9), 094109
[20]Lin X D, Zhang L.Measuring non-Hermitian topological invariants directly from quench dynamics. Physical Reveiew Reseach ,2025,7(1), L012060
[21] Liu D Y,Peng P,Lu, X Y,Shi, A Q,Peng Y C,Wei Y Z,Liu J J,Multiple topological states within a common bandgap of two non-trivial photonic crystals. Optics Letters,2024,49(9) 2393-2396
[22]Cui S J,Geng Z J , Chen Z J, Shen Y X, Zhu X F.Dual-band higher-order topological states in composite square-lattice sonic crystals. Physical Reveiew Applied,2025,23(4), 044005
[23]Shi A Q, Peng Y C,Peng P, Chen J Z, Liu J J.Delocalization of higher-order topological states in higher-dimensional non-Hermitian quasicrystals. Physical Reveiew B,2024,110(1), 014106
[24]Liu T Y, Yan W, Qiu M.Bending immunity in valley edge states and non-Hermitian supercoupling effects. Physical Reveiew B,2024,110(1), L020101
[25] Feynman R P, Hibbs A R.Quantum Mechanics and Path Integrals, New York: McGraw-Hill, 1965.
[26] Caldeira A O, Leggett A J.Quantum Tunneling in Dissipative Systems.Physica A, 1983, 121(3), 587–616.
[27] Kazuyuki S, Yuan M, Hosho K. Quantum many-body scars in spin models with multibody interactionsPhysical Review B, 2023, 108(15), 155102.
[28] Goldenfeld, N.Lectures on Phase Transitions and the Renormalization GroupWestview Press, Boulder, 1992.
[29] Chandrasekhar S.Stochastic Problems in Physics and Astronomy.Reviews of Modern Physics, 1943, 15(1), 1–89.
[30]Ford G W, Kac M, Mazur P.Statistical Mechanics of Assemblies of Coupled Oscillators.Journal of Mathematical Physics, 1965, 6(4), 504–515.
[31] Haake F.Statistical Treatment of Open Systems by Generalized Master Equation.Berlin: Springer-Verlag, 1973.
[32] Klauder J R, McKenna J,Currie D G.Some Aspects of the Rotation and Lorentz Groups.Journal of Mathematical Physics, 1965, 6(5), 734–739.
[33Jarzynski C.Nonequilibrium Equality for Free Energy Differences.Physical Review E, 1997, 56(5), 5018–5035.
[34] Gardiner C W, Collett M J.Input and Output in Damped Quantum Systems.Physical Review A, 1985, 31(6), 3761–3774.
[35] Davies E B.Markovian Master Equations.Communications in Mathematical Physics, 1974, 39(2), 91–110.
[36] Walls D, Milburn G J.Quantum Optics. Berlin: Springer-Verlag, 1994.
[37] Breuer H P, Petruccione F.The Theory of Open Quantum Systems. Oxford :Oxford University Press, 2002.
[38] Lindblad G.On the Generators of Quantum Dynamical Semigroups.Communications in Mathematical Physics, 1976, 48(2), 119–130.
[39] Scully M O, Zubairy M S.Quantum Optics. Cambridge: Cambridge University Press, 1997.
[40] Louisell W H.Quantum Statistical Properties of Radiation. New York: Wiley, 1973.
[41] Wheeler J A, Zurek W H.Quantum Theory of Measurement. Princeton: Princeton University Press, 1983.
[42]Zhang W, Zhou D L, Chang M S, Chapman M S, You L.Proposed Realization of the Einstein-Podolsky-Rosen Paradox with Ultracold Atoms.Physical Review A, 2005, 72(1), 013602.
[43] Immanuel B, Jean D, Wilhelm Z. Many-body physics with ultracold gases[J].Reviews of Modern Physics, 2008, 80(3), 885–960.
[44] Kawaguchi Y, Ueda M.Spinor Bose–Einstein Condensates.Physics Reports, 2012, 520(5), 253–381.
[45] Zhai Q, Chang L, Lu R, You L.Quantum Phase Transitions of Spin-Orbit-Coupled Degenerate Fermi Gases.Physical Review A, 2009, 79(4), 043608.
[46] Schachenmayer J, Pikovsky A, Rey A M.Many-Body Quantum Spin Dynamics with Monte Carlo Trajectories on a Discrete Phase Space.Physical Review X, 2015, 5(1), 011022.
[47] Huber J, Kirton P, Rabl P. Phase-Space Methods for Simulating the Dissipative Many-Body Dynamics of Collective Spin Systems.SciPost Physics, 2021, 10(3), 045. |