量子电子学报 ›› 2025, Vol. 42 ›› Issue (6): 818-828.doi: 10.3969/j.issn.1007-5461.2025.06.009

• 量子光学 • 上一篇    下一篇

基于 KNN 的连续变量量子密钥分发实际攻击检测

刘 潺 1, 黄 磊 2, 王 铮 2,3, 朱凌瑾 4*   

  1. 1 湖南信息学院电子科学与工程学院, 湖南 长沙 410151; 2 湖南大学信息科学与工程学院, 湖南 长沙 410082; 3 太和医院信息资源部, 湖北 十堰 442012; 4 湖南省计量检测研究院, 湖南 长沙 41001
  • 收稿日期:2024-01-22 修回日期:2024-04-09 出版日期:2025-11-28 发布日期:2025-11-28
  • 通讯作者: E-mail: zljdtc@163.com E-mail:zljdtc@163.com
  • 作者简介:刘 潺 ( 1988 - ), 河南永城人, 硕士, 高级科普师, 主要从事量子通信、毫米波雷达、无线传感网络等方面的研究。E-mail: liuchan208@qq.com
  • 基金资助:
    湖南省重点研发计划 (2023GK2021, 2023GK2054)

Practical attacks detection of continuous⁃variable quantum key distribution based on KNN

LIU Chan 1 , HUANG Lei 2 , WANG Zheng 2,3 , ZHU Lingjin 4*   

  1. 1 School of Electronic Science and Engineering, Hunan University of Information Technology, Changsha 410151, China; 2 College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China; 3 Department of Information Resource, Taihe Hospital, Shiyan 442012, China; 4 Hunan Institute of Metrology and Test, Changsha 410014, China
  • Received:2024-01-22 Revised:2024-04-09 Published:2025-11-28 Online:2025-11-28
  • Contact: Lingjin -Zhu E-mail:zljdtc@163.com

摘要: 连续变量量子密钥分发 (CVQKD) 具有理论上的无条件安全性, 这种安全性的前提假设条件是认为发送方 和接收方的物理设备是完美运行的、安全可靠的。然而, 在实际CVQKD系统中, 窃听者可以从信源、信道以及检测 端三个方面, 针对实际设备存在的物理缺陷发动攻击, 导致系统的实际安全性受到破坏。虽然目前针对部分实际量 子攻击已有了相应的防御策略, 但每种策略仅能防御对应的攻击类型, 缺乏有效针对大多数攻击的通用型防御策略。 本文将机器学习技术与CVQKD攻击检测相结合, 提出基于K近邻(KNN)算法的CVQKD实际攻击检测方案。该方 案对CVQKD系统的光脉冲进行特征提取, 学习训练生成KNN预测模型, 最终将该模型部署在CVQKD系统的接收 端, 用来检测实际量子攻击。仿真结果表明, 该攻击检测方案能有效检测出针对CVQKD的多种典型量子攻击, 且查 准率和查全率均高于98%。

关键词: 量子信息, 连续变量量子密钥分发, 实际安全性, 攻击检测, 机器学习

Abstract: Continuous-variable quantum key distribution (CVQKD) has theoretical unconditional security, which is based on the assumption that the physical devices at the sender and receiver operate perfectly and are secure and reliable. However, in practical CVQKD systems, the eavesdropper can launch attacks from three aspects—source, channel, and detection end—by exploiting the physical flaws inherentin actual devices, thereby compromising the practical security of the system. Although corresponding defense strategies have been developed for some practical quantum attacks, each strategy can only defend against specific attack types, lacking a universal defense approach effective against most attacks. By combining machine learning techniques with attacks detection in the CVQKD, we propose a practical attacks detection scheme in this work based on the K-nearest neighbors (KNN) algorithm. This scheme extracts features from the optical pulses of the CVQKD system, trains a KNN prediction model through learning, and ultimately deploys the model at the receiver end of the CVQKD system to detect practical quantum attacks. Simulation results demonstrate that the proposed attack detection scheme can effectively identify various typical quantum attacks targeting CVQKD, with both precision and recall rates exceeding 98%.

Key words: quantum information, continuous-variable quantum key distribution, practical security, attacks detection, machine learning

中图分类号: