[1] Stokowski S E et al. Growth and characterization of large Nd,Cr:GSGG crystals for high-average-power slab lasers [J]. IEEE J. Quantum Electronics, 1988, 24(6): 934-948.
[2] Dinerman B J, Moulton P F. Up-conversion Luminescence of Er3+Yttrium [C].Gallium: Conference Proceedings of IEEE LEOS’92 Annual Meeting, 1992, 310-311.
[3] Zhang Qingli, Yin Shaotang. Research Progress of the Laser Crystal GGG Species [J]. Chinese Journal of Quantum Electronics, 2002,19 (6): 481-484(in Chinese).
[4] Judd B R. Optical absorption intensities of rare-earth ions [J]. Phys. Rev. 1962,127(3): 750-761.
[5] Ofelt G S. Intensities of crystal spectra of rare-earth ions [J]. J. Chem. Phys. 1962, 37(3): 511-520.
[6] Carnall W T, Field P R, Rajnak K. Electronic Energy Levels in the Trivalent Lanthanide AquaIons. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+.J.Chem. Phys. 1968, 49: 4424-4442. [7] Weber, M J. CRC handbook of laser science and technology VolI. Seetion1:Applications,Table 1.5.4.12a
[8] Sardar D K, Bradley W M, Perez J J, et al. Judd–Ofelt analysis of the Er3+ (4f11) absorption intensities in Er3+-doped garnets [J], Journal of Applied Physics, 2003, 93(5):2602-2607.
[9] Li C, Y Guyot, Linatès C, et al. Radiative Transition Probabilities of Trivalent Rare-Earth Ions in LiYF4 [J], OSA Proceedings on Advnnced Solid-State Lasers, 1993, 15:91-95.
[10] Kumar G A, Riman R, Chae S C, et al. Synthesis and spectroscopic characteri- zation of CaF2:Er3+ single crystal for highly efficient 1.53μm amplification [J], Journal of Applied Physics, 2004, 95(7):3243-3249.
[11] Serban Georgescu, Octavian Toma, Totia H. Intrinsic Limits of the Eficiency of Erbium 3-μm Lasers[J]. IEEE J. Quantum Electronics, 2003, 39(6): 722-732.
[12] Zhekov V I, Murina T M, Prokhorov A M, Studenikin M I, Georgescu S, Lupei V, and Ursu I. Cooperative processes in Y3Al5O12:Er3+ crystal [J]. Kvantovaya Elektronika. 1986, 13(2):419-422. |