J4 ›› 2014, Vol. 31 ›› Issue (2): 213-221.

• 非线性光学 • 上一篇    下一篇

非线性定标方法在炉渣成分分析中的应用

贺文干,董凤忠,陈兴龙,余嵘华,付洪波,倪志波,王静鸽,汤玉泉   

  1. 1中国科学院安徽光学精密机械研究所,安徽 合肥 230031; 2 合肥工业大学,安徽 合肥 230009
  • 出版日期:2014-03-28 发布日期:2014-03-20
  • 通讯作者: 董凤忠(1966-),博士,研究员,博士生导师,中科院“百人计划”入选者,主要从事新的环境光学和光纤传感技术用于公共安全,工业过程控制,节能减排减灾等方面的研究。 E-mail:fzdong@aiofm.ac.cn
  • 作者简介:贺文干(1987-)研究生,主要从事激光诱导击穿光谱方面的研究。E-mail:hwengan@163.com
  • 基金资助:
    国家自然科学基金(11075184)和中科院知识创新工程领域前沿项目资助

Application of non-linear calibration method in analysis of slag composition

He Wengan, Dong Fengzhong,Chen Xinglong, Yu Ronghua,Fu Hongbo, Ni Zhibo, Wang Jingge, Tang Yuquan   

  1. 1 Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China; 2 Hefei University of Technology, No.193 Tunxi Road,Hefei 230009, China)
  • Published:2014-03-28 Online:2014-03-20

摘要: 采用激光诱导击穿光谱技术对炉渣中的Ca、Mg含量进行了定量分析。由于炉渣成分复杂,建立的一元回归关系式往往得不到理想的结果,这时需要考虑多个自变量的回归分析问题。为了分析炉渣中Ca、Mg元素的含量,将炉渣中Mg、Ca、Fe、Si、Al的原子谱线强度以及Mg、Ca的离子谱线强度作为输入向量。由于不同谱线强度相差过大时,会使在计算出的权重系数中,不同谱线所占的比重大不相同。为了消除不同谱线强度差距过大的影响,对光谱强度进行标准化处理,把所有谱线强度的值放在了一个相似的范围。综合对比分析了非线性多元函数定标、BP神经网络定标以及径向基网络(RBF神经网络)定标在炉渣成分分析中的作用,并重点分析了RBF神经网络定标相对于传统非线性定标方法的优势。

关键词: 光谱学, 激光诱导击穿光谱, 标准化, 多个自变量, 径向基网络

Abstract: Contents of Ca and Mg in the slag are analyzed quantitatively with laser-induced breakdown spectroscopy (LIBS). Due to the complexity of the slag composition a regression relationship established often fails to get the desired result,this results in that the problem of multiple variable regression analysis must be considered. In order to analyze the contents of Ca and Mg in the slag, the Mg, Ca, Fe, Si, Al atomic line intensity and Mg, and Ca ion line intensity are used as the input vectors. However, when the absolute line intensity including strong spectral lines and weaker spectral lines are put together as the input vector, the influence of the former will cover up the latter. o spectral intensity needs treated first to place all the values of the line intensities in a similar range. The slag composition analysis are then performed and compared using three calibration methods like nonlinear multi-function,BP neural network and radial basis function (RBF) network. In addition, the advantage of the RBF neural network calibration relative to traditional non-linear calibration method is particularly emphasized.

Key words: spectroscopy, laser-induced breakdown spectroscopy, standardization, multi-variables, radial basis function networks

中图分类号: