Chinese Journal of Quantum Electronics ›› 2021, Vol. 38 ›› Issue (5): 593-607.doi: 10.3969/j.issn.1007-5461.2021.05.004
Previous Articles Next Articles
CAO Yuan1;2, PENG Jie1, WANG Ruifeng1, LIU Kun1∗, GAO Xiaoming1;2
Received:
2021-06-23
Revised:
2021-07-09
Published:
2021-09-28
Online:
2021-09-28
CLC Number:
CAO Yuan, PENG Jie, WANG Ruifeng, LIU Kun∗, GAO Xiaoming, . Research progress of photoacoustic spectroscopy for aerosol optical absorption measurement[J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 593-607.
[1] Lack D A, Cappa C D, Cross E S, et al. Absorption enhancement of coated absorbing aerosols: validation of the photo-acoustic technique for measuring the enhancement[J]. Aerosol Science and Technology, 2009, 43(10):1006-1012.[2] Cappa C D, Onasch T B, Massoli P, et al. Radiative absorption enhancements due to the mixing state of atmospheric black carbon[J]. Science, 2012, 337(6098):1078-1081.[3] IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.[4] Moosmuller H, Chakrabarty R K, Arnott W P. Aerosol light absorption and its measurement: A review[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110(11):844-878.[5] Radne J G, You R, Zacharia M R, et al. Direct in situ mass specific absorption spectra of biomass burning particles generated from smoldering hard and softwoods[J]. Environmental Science & Technology, 2017, 51(10):5622-5629.[6] Jacobson M Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols[J]. Nature, 2001, 409(6821):695-697.[7] Andreae M O, Gelencser A. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols[J]. Atmospheric Chemistry and Physics, 2006, 6(10):3131-3148.[8] Lack D A, Lovejoy E R, Baynard T, et al. Aerosol absorption measurement using photoacoustic spectroscopy: sensitivity, calibration, and uncertainty developments[J]. Aerosol Science & Technology, 2006, 40(9):697-708.[9] Cremer J W, Covert P A, Parmentier E A, et al. Direct measurement of photoacoustic signal sensitivity to aerosol particle size[J]. Journal of Physical Chemistry Letters, 2017, 8(14):3398-3403.[10] Gerber H E. Portable cell for simultaneously measuring the coefficients of light scattering and extinction for ambient aerosols[J]. Applied Optics, 1979, 18(7):1009-1014.[11] Xu X Z, Zhao W X, Fang B, et al. Three-wavelength cavity-enhanced albedometer for measuring wavelength dependent optical properties and single scattering albedo of aerosols[J]. Optics Express, 2018, 26(25): 33484-33500.[12] Langridge J M, Richardson M S, Lack D, et al. Aircraft instrument for comprehensive characterization of aerosol optical properties, part I: wavelength-dependent optical extinction and its relative humidity dependence measured using cavity ringdown spectroscopy[J]. Aerosol Science & Technology, 2011, 45(11):1305-1318.[13] Fischer D A, Smith G D. A portable, four-wavelength, single-cell photoacoustic spectrometer for ambient aerosol absorption[J]. Aerosol Science and Technology, 2018, 52(4):393-406.[14] Bell A G. On the production and reproduction of sound by light[J]. American Journal of Science, 1880, 20:305-324.[15] Roy S, Diveky M E, Signorell R. Mass accommodation coefficients of water on organics from complementary photoacoustic and light scattering measurements on laser-trapped droplets[J]. Journal of Physical Chemistry C, 2020, 124(4):2481-2489.[16] Arnott W P, Moosmller H, Rogers C F, et al. Photoacoustic spectrometer for measuring light absorption by aerosol: Instrument description[J]. Atmospheric Environment, 1999, 33(17):2845-2852.[17] Radney J G, Zangmeister C D. Measurement of gas and aerosol phase absorption spectra across the visible and near-IR using supercontinuum photoacoustic spectroscopy[J]. Analytical Chemistry, 2015, 87(14):7356-7363.[18] Wiegand J R, Mathews L D, Smith G D. A UV-Vis photoacoustic spectrophotometer[J]. Analytical Chemistry, 2014, 86(12):6049-6056.[19] Yu Z, Magoon G, Assif J, et al. A single-pass RGB differential photoacoustic spectrometer (RGB-DPAS) for aerosol absorption measurement at 473, 532, and 671 nm[J]. Aerosol Science and Technology, 2019, 53(1):94-105.[20] Haisch C, Menzenbach P, Bladt H, et al. A wide spectral range photoacoustic aerosol absorption spectrometer[J]. Analytical Chemistry, 2012, 84(21):8941-8945.[21] Ajtai T, Agnes F, Schnaiter M, et al. A novel multiwavelength photoacoustic spectrometer for the measurement of the UV–vis-NIR spectral absorption coefficient of atmospheric aerosols[J]. Journal of Aerosol Science, 2010, 41(11):1020-1029.[22] Diveky M E, Roy S, Cremer J W, et al. Assessing relative humidity dependent photoacoustics to retrieve mass accommodation coefficients of single optically trapped aerosol particles[J]. Physical Chemistry Chemical Physics, 2018, 21(9):4721-4731.[23] Cremer J W, Thaler K M, Haisch C, et al. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics[J]. Nature Communications, 2016, 7:10941.[24] Cao Y, Liu K, Wang R, et al. Three-wavelength measurement of aerosol absorption using multi-resonator coupled photoacoustic spectrometer[J]. Optics Express, 2020, 29(2):2258-2269.[25] Cao Y, Liu Q, Wang R, et al. Development of a 443 nm diode laser-based differential photoacoustic spectrometer for simultaneous measurements of aerosol absorption and NO2[J]. Photoacoustics, 2020, 21:100229.[26]刘强,牛明生,王贵师,曹振松,刘锟,陈卫东,高晓明. 适用于测量大气气溶胶吸收系数的光声光谱系统的研究[J]. 光谱学与光谱分析, 2013, 33(7):1729-1733.[27] Liu Q, Huang H, Wang G, Cao Z, Liu K, Chen W, Gao X. Multi-wavelength measurements of aerosol optical absorption coefficients using a photoacoustic spectrometer[J]. Chinese Physics B, 2014, 23(6):064205.[28]刘强,王贵师,刘锟,陈卫东,朱文越,黄印博,高晓明. 基于光声光谱技术的大气气溶胶吸收系数测量[J]. 红外与激光工程, 2014, 43(9):3010-3014.[29]陈杰, 钱仙妹, 刘强, 郑健捷,朱文越,李学彬. 1064 nm波长大气气溶胶光吸收特性[J]. 光谱学与光谱分析, 2020, 40(10):2989-2995.[30] Liu K, Cao Y, Wang GS, et al. A novel photoacoustic spectroscopy gas sensor using a low cost polyvinylidene fluoride film[J]. Sensors and Actuators B: Chemical, 2018, 277(2018):571-575.[31] Wu HP, Yin XK, Dong L, et al. Ppb-level nitric oxide photoacoustic sensor based on a mid-IR quantum cascade laser operating at 52 °C[J]. Sensors and Actuators B: Chemical, 2019, 290(2019):426-433.[32] Ma YF, Qiao SD, He Y, et al. Highly sensitive acetylene detection based on multi-pass retro-reflection-cavity-enhanced photoacoustic spectroscopy and a fiber amplified diode laser[J]. Optics Express, 2019, 27(10):14163-14172.[33] Wang Q, Wang Z, Chang J, et al. Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing[J]. Optics Letters, 2017, 42(11):2114-2117.[34] Bruce C W, Pinnick R G. In situ measurement of light absorption with a resonant CW laser spectrophone[J]. Applied Optics, 1977,16(7):1762–1765.[35] Terhune R W, Anderson J E. Spectrophone measurements of the absorption of visible light by aerosols in the atmosphere[J]. Optics Letters, 1977, 1(2):70-72.[36] Petzold A, Niessner R. Novel design of a resonant photoacoustic spectrophone for elemental carbon mass monitoring[J]. Applied Physics Letters, 1995, 66(10):1285-1287.[37] Arnott W P, Walker J W, Moosmuller H, et al. Photoacoustic insight for aerosol light absorption aloft from meteorological aircraft and comparison with particle soot absorption photometer measurements: DOE Southern Great Plains climate research facility and the coastal stratocumulus imposed perturbation experiments[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D5): D05S02.[38] Lewis K, Arnott W P, Moosmuller H, et al. Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument[J]. Journal of Geophysical Research Atmospheres, 2008, 113(D16):D16203.[39] Lack D A, Richardson M S, Law D, et al. Aircraft instrument for comprehensive characterization of aerosol optical properties, Part 2: black and brown carbon absorption and absorption enhancement measured with photo acoustic spectroscopy[J]. Aerosol Science & Technology, 2012, 46(5):555-568.[40] Lack D A, Langridge J M, Bahreini R, et al. Brown carbon and internal mixing in biomass burning particles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(37):14802-14807.[41] Sharma N, Arnold I J, Moosmuller H, et al. Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source[J]. Atmospheric Measurement Techniques, 2013, 6(4):3501-3513.[42] Zhu W Y, Liu Q, Wu Y. Aerosol absorption measurement at SWIR with water vapor interference using a differential photoacoustic spectrometer[J]. Optics Express, 2015, 23(18):23108-23116.[43] Yu Z H, Assif J, Magoon G, et al. Differential photoacoustic spectroscopic (DPAS)-based technique for PM optical absorption measurements in the presence of light absorbing gaseous species[J]. Aerosol Science and Technology, 2017, 51(12):1438-1447.[44] Wang G, Kulinski P, Hubert P, et al. Filter-free light absorption measurement of volcanic ashes and ambient particulate matter using multi-wavelength photoacoustic spectroscopy[J]. Progress In Electromagnetics Research, 2019, 166:59-74.[45] Yin X, Zhang L, Wu H, et al. Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser[J]. Sensors and Actuators B: Chemical, 2017, 247:329-335.[46] Cotterell M I, Orr-Ewing A J, Szpek K, et al. The impact of bath gas composition on the calibration of photoacoustic spectrometers with ozone at discrete visible wavelengths spanning the Chappuis band[J]. 2019, 12(4):2371-2385.[47] Bluvshtein N, Flores J M, He Q, et al. Calibration of a multi-pass photoacoustic spectrometer cell using light-absorbing aerosols[J]. Atmospheric Measurement Techniques, 2017, 10(3):1203-1213.[48] Haisch C. Photoacoustic spectroscopy for analytical measurements[J]. Measurement Science & Technology, 2012, 23(1):012001.[49] Tian G, Moosmuller H, Arnott W P. Simultaneous photoacoustic spectroscopy of aerosol and oxygen A-band absorption for the calibration of aerosol light absorption measurements[J]. Aerosol Science & Technology, 2009, 43(11):1084-1090.[50] Gillis K A. Standard photoacoustic spectrometer: Model and validation using O2 A-band spectra[J]. Review of Scientific Instruments, 2010, 81(6):64902-64902.[51] Havey D K, Bueno P A, Gillis K A, et al. Photoacoustic spectrometer with a calculable cell constant for measurements of gases and aerosols[J]. Analytical Chemistry, 2010, 82(19):7935-7942.[52] Three-Wavelength Photoacoustic Soot Spectrometer (PASS-3) Operator Manual[53] Liu K, Mei J, Zhang W, et al. Multi-resonator photoacoustic spectroscopy[J]. Sensors & Actuators B Chemical, 2017, 251:632-636.[54] Diveky M E, Roy S, Gregory D, et al. Fundamental investigation of photoacoustic signal generation from single aerosol particles at varying relative humidity[J]. Photoacoustics, 2020, 18:100170. |
[1] | MA Fengxiang , ZHAO Yue , LI Chenxi , AN Ran , ZHU Feng , HANG Chen , CHEN Ke . Analysis system of dissolved gas in oil based on optical fiber photoacoustic sensing [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 597-605. |
[2] | CAO Dongmei , LI Yongfang . Investigation on localized surface plasmon resonance in bowtie gold dimer [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 606-613. |
[3] | FEI Ye , SUN Zhongmou , TIAN Dongpeng , LIU Xiaoyuan , LIU Yuzhu , . Influence of fruit charcoal combustion on air composition based on laser⁃induced breakdown spectroscopy [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 436-446. |
[4] | WANG Haiqing , , SHI Wei . Research progress of THz-ATR technology for detecting biomedical samples [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 319-332. |
[5] | ZENG Ziwei , LI Hongguang, GUO Yufeng , LIAO Wentao. High-accuracy terahertz spectral identification method for concealed dangerous goods [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 340-348. |
[6] | BAI Yanbing , , ZHANG Mengyuan , , ZHU Mengqi , , LI Xu , , YAN Jiayu , , ZHANG Cunlin , , ZUO Jian , . Terahertz kinetic study of α-lactose monohydrate [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 349-359. |
[7] | GE Hongyi , , WANG Fei , , JIANG Yuying , , LI Li , , ZHANG Yuan , , JIA Keke , . Identification of wheat mold using terahertz images based on Broad Learning System [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 360-368. |
[8] | ZHANG Ranran, YING Luna, ZHOU Weidong . Application of relevance vector machine combined with principal component analysis in quantitative analysis of LIBS [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 376-382. |
[9] | ZHANG Mengsi , JU Wei , CHENG Zhiyou , REN Huidong. FTIR spectral wavenumber optimization for ethylene based on IRIV-SA [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 383-391. |
[10] | WANG Kang , , LIU Yi , SONG Liwei ∗. Research progress in phase transition of vanadium dioxide films driven by ultrafast optical field [J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 238-257. |
[11] | YANG Jin , , WANG Yunfeng , , CHU Lingqiao , JIANG Huachao , SU Fuhai ∗. Investigation of ultrafast photocarrier dynamics in few-layer PtSe2 thin films [J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 282-292. |
[12] | WANG Zeyu, CUI Qi, HE Xiaohu, LU Danhua, QIU Xuanbing, HE Qiusheng, LAI Yunzhong, LI Chuanliang∗. Computational and spectroscopic investigation of two lowest electronic states of I+2 [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 477-484. |
[13] | XU Peng, JIA Ren, YAO Guanxin, QIN Zhengbo, ZHENG Xianfeng, YANG Xinyan, CUI Zhifeng, . Laser-induced breakdown spectroscopy of metal-element in mixed aqueous solutions by partial least-squares regression [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 485-493. |
[14] | YU Wei, ZHOU Zhuoyan, SUN Zhongmou, ZHANG Xinglong, LIU Yuzhu, . Real-time detection of the genus Rosa L. using LIBS technology [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 494-501. |
[15] | DING Bokun, SHAO Ligang, WANG Kunyang, CHEN Jiajin, WANG Guishi, LIU Kun, MEI Jiaoxu, TAN Tu, GAO Xiaoming, ∗. Research on real-time detection technology of dissolved gas in seawater based on off-axis integrating cavity [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 502-510. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||