量子电子学报 ›› 2021, Vol. 38 ›› Issue (3): 281-289.doi: 10.3969/j.issn.1007-5461.2021.03.003

• 光谱 • 上一篇    下一篇

基于变量选择技术的FTIR光谱识别算法研究

沈先春1;2;3, 徐亮1;3∗, 孙永丰1;2;3, 胡运优1;2;3, 金岭1;3, 杨伟锋1;3 , 徐寒扬1;3 , 刘建国1;3 , 刘文清1;3   


  1. 1 中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽合肥230031; 2 中国科学技术大学, 安徽合肥230026; 3 安徽省环境光学监测技术重点实验室, 安徽合肥230031
  • 收稿日期:2020-05-28 修回日期:2020-06-01 出版日期:2021-05-28 发布日期:2021-05-28
  • 通讯作者: E-mail: xuliang@aiofm.ac.cn
  • 作者简介:沈先春( 1992 - ), 安徽安庆人, 研究生, 主要从事傅里叶变换红外光谱分析方法方面的研究。E-mail: xcshen@aiofm.ac.cn
  • 基金资助:
    Supported by Key Research Project of Frontier Science of Chinese Academy of Sciences (中国科学院前沿科学重点研究项目, QYZDYSSW- DQC016), Key Research and Development Plan of Anhui Province of China (安徽省重点研究和开发计划, 1804d08020300), Special Project of National Natural Science Foundation of China (国家自然科学基金专项项目, 41941011), National Key Research and Development Plan (国家重点研发计 划, 2016YFC0803001-08)

FTIR spectrum recognition algorithm based on variable selection technology

SHEN Xianchun1;2;3, XU Liang1;3∗, SUN Yongfeng1;2;3, HU Yunyou1;2;3, JIN Ling1;3, YANG Weifeng1;3, XU Hangyang1;3, LIU Jianguo1;3, LIU Wenqing1;3   

  1. 1 Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; 2 University of Science and Technology of China, Hefei 230026, China; 3 Key Laboratory of Optical Monitoring Technology for Environment, Hefei 230031, China
  • Received:2020-05-28 Revised:2020-06-01 Published:2021-05-28 Online:2021-05-28

摘要: 将变量选择方法中SFS、LASSO 和Elastic Net 三种不同方法与广义交互验证准则相结合, 实现对FTIR 光谱气体成分变量的初步筛选, 再采用循环迭代CLS 方法对初步筛选的变量中浓度小于0 的成分进行循环剔 除, 然后根据变量在测量向量中的方向占比对选择的变量进行精选, 最终得到目标气体成分。为了验证各识别 算法的识别性能, 分别进行了CH4 和SF6 外场排放实验, 两组实验结果表明建立的识别算法应用于气体目标识 别的效率高、识别准确率高, 且能够识别出干扰成分H2O。此算法为被动FTIR 技术在危险气体泄露预警监测 中的应用提供了方法基础。

关键词: 光谱学, 气体识别方法, 变量选择技术, 光谱分析

Abstract: Qualitative spectrum recognition algorithm is the basis of application of passive Fourier transform infrared spectroscopy (FTIR) in monitoring and early warning of toxic and hazardous gases. Three different methods, SFS, LASSO and Elastic Net, are used to perform preliminary selection of gas component variables in the FTIR spectrum by combining with the generalized cross-validation criteria. Then, the cyclic iterative CLS method is used to perform cyclic elimination of the components with concentrationless than 0 in the preliminary screened variables. Finally, the direction proportion of the variables in the measurement vector is used to further select from the selected variables to get the target gas composition. In order to verify the performance of each recognition algorithm, the simulation experiments of CH4 and SF6 field emission are carried out respectively. The experimental results show that the established recognition algorithm can identify the target components quickly and effectively, the recognition response time is second level, the recognition accuracy is as high as 99%, and it can also accurately identify the interference component H2O. It is shown that the proposed algorithm provides a method basis for the application of passive FTIR technology in emergency monitoring and warning of dangerous gas leakage.

Key words: spectroscopy, gas identification method, variable selection method, spectral analysis

中图分类号: