量子电子学报 ›› 2021, Vol. 38 ›› Issue (5): 547-563.doi: 10.3969/j.issn.1007-5461.2021.05.001
王 野1;2, 张 嵩1;2∗, 张 冰1
收稿日期:
2021-07-01
修回日期:
2021-07-23
出版日期:
2021-09-28
发布日期:
2021-09-28
通讯作者:
E-mail: zhangsong@wipm.ac.cn
E-mail:zhangsong@wipm.ac.cn
作者简介:
王 野 ( 1994 - ), 辽宁兴城人, 博士生, 主要从超快激光光谱方面的研究。 E-mail: 2013301020006@whu.edu.cn
基金资助:
WANG Ye1;2, ZHANG Song1;2∗, ZHANG Bing1
Received:
2021-07-01
Revised:
2021-07-23
Published:
2021-09-28
Online:
2021-09-28
摘要: 超快激光技术的出现极大地促进了人们对众多研究领域中超短时间尺度 (例如飞秒) 的微观过程的深入 理解。详细介绍了基于飞秒时间分辨的瞬态吸收光谱技术与原理, 并结合本课题组的工作, 展示了该方法在凝聚 相分子体系中量子态演化过程及其相互作用研究中的应用, 特别是对激发态电子能量弛豫、波包演化过程、能量 转移过程、质子/电荷转移以及分子激发态结构动力学等微观机制的研究,表明该方法可以广泛应用到物理、化 学、材料、生物、环境等交叉研究领域。最后, 对该技术的发展前景以及未来研究方向进行了展望。
中图分类号:
王 野, 张 嵩, ∗, 张 冰. 飞秒瞬态吸收光谱技术及应用[J]. 量子电子学报, 2021, 38(5): 547-563.
WANG Ye, ZHANG Song, ∗, ZHANG Bing. Femtosecond transient absorption spectroscopy and its applications[J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 547-563.
[1] Deisenhofer J, Epp O, Miki K, Huber R Michel H. Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas-Viridis at 3? Resolution[J].1985,Nature,318:618-624.[2] Yu L-J, Suga M, Wang-Otomo Z Y, Shen, J R. Structure of photosynthetic LH1–RC supercomplex at 1.9 ? resolution[J]. 2018, Nature, 556: 209-213.[3] Qian P, Siebert C A, Wang P, Canniffe D P, Hunter C N. Cryo-EM structure of the Blastochloris viridis LH1–RC complex at 2.9 ?[J]. 2018, Nature,556: 203-208.[4] Niwa S, Yu L, Takeda K, Hirano Y, Kawakami T, Wang-Otomo Z Y, Miki K. Structure of the LH1-RC complex from thermochromatium tepidum at 3.0 ?[J]. 2014, Nature, 508: 228-232.[5] Jahnke K, Ritzmann N, G?pfrich K. Proton gradients from light-harvesting E. coli control DNA assemblies for synthetic cells[J]. 2021, Nature Comm., 12: 3967.[6] Trautman J K, Shreve A P, Violette C A, Frank H A, Owens T G, Albrecht A C. Femtosecond dynamics of energy transfer in B800-850 light-harvesting complexes of Rhodobacter sphaeroides[J]. 1990, Proc. Nat. Acad. Sci., 87: 215-219.[7] Cheng Y, Fleming G R. Dynamics of light harvesting in photosynthesis[J]. 2009, Annu. Rev. Phys. Chem., 60: 241-262.[8] Kumar G S, Lin Q, Light-triggered click chemistry[J]. 2021, Chem. Rev.,121:6991-7031.[9] ?ebelík V, Kuznetsova V, Lokstein H, Polívka T. Transient absorption of chlorophylls and carotenoids after two-photon excitation of LHCII[J]. 2021, J. Phys. Chem. Lett., 12: 3176-3181[10] Kuramochi H, Tahara T. Tracking ultrafast structural dynamics by time-domain Raman spectroscopy[J]. 2021, J. Am. Chem. Soc., 143: 526-537[11] Kohler G. Derivation and diversification of monoclonal antibodies[J]. 1986, Science, 233:1276-1280.[12] Khundkar L R, Zewail A H. Ultrafast molecular reaction dynamics in real-time: Progress over a decade[J]. 1990, Annu. Rev. Phys. Chem., 41: 15-60.[13] Suzuki T. Femtosecond time-resolved photoelectron imaging[J]. 2006, Annu. Rev. Phys. Chem., 57: 555-592.[14] Suzuki T. Time-resolved photoelectron spectroscopy of non-adiabatic electronic dynamics in gas and liquid phases[J]. 2012, Int. Rev. Phys. Chem. 31: 265-318.[15] Bragg A E, Verlet J R R, Kammrath A, Cheshnovsky O, Neumark D M. Hydrated electron dynamics: from clusters to bulk[J]. 2004, Science, 306: 669-671.[16] Bragg A E, Verlet J R R, Kammrath A, Cheshnovsky O, Neumark D M. Electronic relaxation dynamics of water cluster anions[J]. 2004, J. Am. Chem. Soc., 127: 15283-15295.[17] King S B, Stephansen A B, Yokoi Y, Yandell M A, Kunin A, Takayanagi T, Neumark D M. Electron accommodation dynamics in the DNA base thymine[J]. 2015, J. Chem. Phys., 143: 024312.[18] Li W L, Kunin A, Matthews E, Yoshikawa N, Dessent C E H, Neumark D M. Photodissociation dynamics of the iodide-uracil (I?U) complex[J]. 2015, J. Chem. Phys., 145: 044319.[19] Kunin A, Li W L, Neumark D M. Time-resolved photoelectron imaging of iodide–nitromethane (I?·CH3NO2) photodissociation dynamics[J]. 2016, Phys. Chem. Chem. Phys., 18: 33226-33232.[20] Studzinski H, Zhang S, Wang Y, Temps F. Ultrafast nonradiative dynamics in electronically excited hexafluorobenzene by femtosecond time-resolved mass spectrometry[J]. 2008, J. Chem. Phys., 128: 164314.[21] Huter O, Sala M, Neumann H, Zhang S, Studzinski H, Egorova D, Temps F. Long-lived coherence in pentafluorobenzene as a probe of ππ* – πσ* vibronic coupling[J]. 2016, J. Chem. Phys., 145: 014302.[22] Huter O, Temps F. Ultrafast α-CC bond cleavage of acetone upon excitation to 3p and 3d Rydberg states by femtosecond time-resolved photoelectron imaging[J]. 2016, J. Chem. Phys., 145: 214312.[23] Noller B, Poisson L, Maksimenka R, Gobert O, Fischer I, Mestdagh J M. Ultrafast dynamics of isolated phenylcarbenes followed by femtosecond time-resolved velocity map imaging[J]. 2009, J. Phys. Chem. A, 113: 3041-3050.[24] Wang B, Liu B, Wang Y, Wang L. Ultrafast dynamics of pyridine in “channel three” region[J]. 2010, Int. J. Mass Spectrom., 289: 92-97.[25] Yang D, Chen Z, He Z, Wang H, Min Y, Yuan K, Dai D, Wu G, Yang X. Ultrafast excited-state dynamics of 2,4-dimethylpyrrole[J]. 2017, Phys. Chem. Chem. Phys., 19: 29146-29152.[26] Yang D, Min Y, Chen Z, He Z, Yuan K, Dai D, Yang X, Wu G. Ultrafast excited-state dynamics of 2,5-dimethylpyrrole[J]. 2018, Phys. Chem. Chem. Phys., 20: 15015-15021.[27] He Z, Yang D, Chen Z, Yuan K, Dai D, Wu G, Yang X. An accidental resonance mediated predissociation pathway of water molecules excited to the electronic C state[J]. 2017, Phys. Chem. Chem. Phys., 19: 29795-29800.[28] Grundmann S, Trabert D, Fehre K, Strenger N, Pier A, Kaiser L, Kircher M, Weller M, Eckart S, Schmidt L P H, Trinter F, Jahnke T, Sch?ffler M S, D?rner R. Zeptosecond birth time delay in molecular photoionization[J]. 2020, Science, 370: 339-341.[29] Dobryakov A L, Kovalenko S A, Weigel A, Pérez-Lustres J L, Lange J, Müller A, Ernsting N P. Femtosecond pump/supercontinuum-probe spectroscopy: Optimized setup and signal analysis for single-shot spectral referencing[J]. 2010, Rev. Sci. Instrum. 81: 113106.[30] Zhang X X, Würth C, Zhao L, Resch-Genger U, Ernsting N P, Sajadi M. Femtosecond broadband fluorescence upconversion spectroscopy: Improved setup and photometric correction[J]. 2011, Rev. Sci. Instrum.82: 063108.[31] Zhang W, Xu W, Zhang G, Kong J, Niu X, Chan J M W, Liu W, Xia A. Direct tracking excited-state intramolecular charge redistribution of acceptor–donor–acceptor molecule by means of femtosecond stimulated Raman spectroscopy[J]. 2021, J. Phys. Chem. B, 125: 4456-4464.[32] Li S, Long J, Ling F, Wang Y, Song X, Zhang S, Zhang B. Real-time visualization of the vibrational wavepacket dynamics in electronically excited pyrimidine via femtosecond time-resolved photoelectron imaging[J]. J. Chem. Phys., 2017, 147: 044309.[33] Zhou Q H, Zhou M M, Wei Y X, Zhou X G, Liu, S L, Zhang S, Zhang B Solvent effect on triplet-triplet annihilation upconversion of diiodo-bodipy and perylene[J]. 2017, Phys. Chem. Chem. Phys., 19: 1516-1525.[34] Wei Y X, Zhou, M M, Zhou, Q H, Zhou X G, Liu S L, Zhang S, Zhang B. Triplet-triplet annihilation upconversion kinetics of c60-bodipy dyads as organic triplet photosensitizers[J]. 2017, Phys. Chem. Chem. Phys., 19: 22049-22060.[35] Zhang S, Sun S, Zhou M, Wang L, Zhang B. Ultrafast investigation of photoinduced charge transfer in aminoanthraquinone pharmaceutical product[J]. 2017, Sci. Rep., 7: 43419.[36] Wang Y, Tang Y, Zhang S, Long J, Zhang B. Excited state dynamics of molecules studied with femtosecond time-resolved mass spectrometry and photoelectron imaging[J]. 2018, Acta Phys. Sin., 67: 227802.[37] Zhou M, Zhang S, Wang L, Zhang B. Ultrafast photoinduced charge transfer character in o?oxacin singlet decay[J]. 2018, Chem. Phys. Lett., 710: 1-5.[38] Wang Y, Li C, Zhang B, Qin C, Zhang S. Ultrafast investigation of excited-state dynamics in trans-4-methoxyazobenzene studied by femtosecond transient absorption spectroscopy[J]. 2018, Chin. J. Chem. Phys., 31: 749-755.[39] Sun S, Zhang S, Jiang C, Guo X, Hu Y. Theoretical study on twisted intramolecular charge transfer of 1-aminoanthraquinone in different solvents[J]. 2018, Chin. Phys. B, 27: 083401.[40] Wu K, Zhang T, Wang Z, Wang L, Zhan L, Gong S, Zhong C, Lu Z, Zhang S, Yang C. De novo design of excited-state intramolecular proton transfer emitters via a thermally activated delayed fluorescence channel[J]. 2018, J. Am. Chem. Soc., 140: 8877-8886.[41] Xiong J, Yuan Y, Wang L, Sun J, Qiao W, Zhang H, Duan M, Han H, Zhang S, Zheng Y. Evidence for aggregation-induced emission from free rotation restriction of double bond at excited state[J]. 2018, Org. Lett., 20: 373-376.[42] Zhou M, Wang L, Zhang S, Zhang B. Ultrafast spectroscopy of the primary charge transfer and ISC processes in 9-anthraldehyde[J]. 2019, Chem. Phys. Lett., 717: 1-6.[43] Liu C, Bao L, Yang M, Zhang S, Zhou M, Tang B, Wang B, Liu Y, Zhang Z L, Zhang B, Pang D W. Surface sensitive photoluminescence of carbon nanodots coupling between the carbonyl group and π?electron system[J]. 2019, J. Phys. Chem. Lett., 10: 3621-3629.[44] Chen Z, Yu Z, Zhou M, Zhang S, Zhang B, Liu Y, Zhao Y, Cao H, Lin Y, Zhang Z L, Pang D W. Chlorophyll-based near-infrared fluorescent nanocomposites preparation and optical properties[J]. 2020, ACS Omega, 5:14261-14266.[45] Lei H, Dai P, Wang X, Pan Z, Guo Y, Shen H, Chen J, Xie J, Zhang B, Zhang S, Tan Z In situ defects passivation with silica oligomer for enhanced performance and stability of perovskite solar cells[J]. 2020, Adv. Mater. Inter., 7: 1901716.[46] Liang Y, Guo Y, Wang Y, Zhang S, Pan Y, Shi Y, Wang Y, Zhu L, Jin B, Sun Y, Zhang B, Feng X, Yuan M, Wang H, Zhao G. Combined ultrafast spectroscopic and TDDFT theoretical studies on dual fluorescence emissions promoted by LMCT excited states of tungsten-containing organometallic complexes[J]. 2020, Chem. Phys. Lett., 748: 137396.[47] Shi Y, Zhao X, Wang C, Wang Y, Zhang S, Li P, Feng X, Jin B, Yuan M, Cui S, Sun Y, Zhang B, Sun S, Jin X, Wang H, Zhao G. Ultrafast nonadiabatic photoisomerization dynamics mechanism for the UV photoprotection of stilbenoids in grape skin[J]. 2020, Chem. Asian J., 15: 1478-1483.[48] Shu G, Wang Y, Li Y, Zhang S, Jiang J, Wang F. A high performance and low cost poly(dibenzothiophene-S,S-dioxide)@TiO2 composite with hydrogen evolution rate up to 51.5 mmol h-1 g-1[J]. 2020, J. Mater. Chem. A, 8: 18292.[49] Wei Y X, Wang Y, Zhou Q H, Zhang S, Zhang B, Zhou X G, Liu S L. Solvent effects on triplet–triplet annihilation upconversion kinetics of perylene with a Bodipy-phenyl-C60 photosensitizer[J]. 2020, Phys. Chem. Chem. Phys., 22: 26372-26382.[50] Wang L, Zhang S, Wang Y, Zhang B. Dispersion-induced structural preference in the ultrafast dynamics of diphenyl ether[J]. 2020, RSC Adv., 10:18093-18098.[51] Wang L, Zhang S, Wang Y, Zhang B. Effect of hydrogen bonding on the nonradiative properties of dibenzofuran[J]. 2020, Spectrochim. Acta A, 224: 117466.[52] Wang L, Zhang S, Wang Y, Zhang B. The geometry relaxation and photodeactivation from the S2 state of dibenzofuran studied by ultrafast spectroscopy[J]. 2020, Z. Phys. Chem., 234: 1495-1506.[53] Yang M, Liu C, Peng Y, Xiao R, Zhang S, Zhang Z L, Zhang B, Pang, D W. Surface chemistry tuning the selectivity of carbon nanodots towards Hg2+ recognition[J]. 2021, Anal. Chim. Acta, 1146: 33-40.[54] Wang Y, Guo Y, Liang Y, Pan Y, Shi Y, Wang Y, Zhang S, Jin B, Zhao G. Coordination-promoted photoluminescence induced by configuration twisting regulation[J]. 2021, J. Luminescence, 231: 117783.[55] Wang M, Shi Y, Guo Y, Chen Y, Zhao C, Zhou Y, Xiao Y., Wang Y, Zhang S, Jin B, Wu Z, Zhao G. Nonadiabatic dynamics Mechanisms of natural UV Photoprotection compounds chlorogenic acid and isochlorogenic acid a: Double conjugated structures but single photoexcited channel[J]. 2021, J. Mol. Liq., 324: 114725.[56] Sebastian B V, Magar R T, Breen D J, Rack J J. A future perspective on phototriggered isomerizations of transition metal sulfoxides and related complexes[J]. 2021, J. Am. Chem. Soc., 143: 526-537.[57] Carpenter B K, Harvey J N, Orr-Ewing A J. The study of reactive intermediates in condensed phases[J]. 2016, J. Am. Chem. Soc., 138: 4695-4705.[58] Bordiga S, Groppo E, Agostini G, van Bokhoven J A, Lamberti C. Reactivity of Surface Species in Heterogeneous Catalysts Probed by In Situ X-ray Absorption Techniques[J]. 2013, Chem. Rev., 113: 1736-1850.[59] Rasmusson M, Tarnovsky A N, Kesson E, On the use of two-photon absorption for determination of femtosecond pump–probe cross-correlation functions[J]. 2001, Chem. Phys. Lett., 335: 201-208.[60] Ekvall K, Van Der Meulen P, Dhollande C. Cross phase modulation artifact in liquid phase transient absorption spectroscopy[J]. 2000, J. Appl. Phys., 87: 2340-2352.[61] Dietzek B, Pascher T, Sundstr?m V. Appearance of coherent artifact signals in femtosecond transient absorption spectroscopy in dependence on detector design[J]. 2006, Laser Phys. Lett., 4: 38.[62] Kovalenko S, Ernsting N, Ruthmann J. Femtosecond hole-burning spectroscopy of the dye DCM in solution: the transition from the locally excited to a charge-transfer state[J]. 1996, Chem. Phys. Lett., 258: 445-454.[63] Dobryakov A, Kovalenko S, Ernsting N. Coherent and sequential contributions to femtosecond transient absorption spectra of a rhodamine dye in solution[J]. 2005, J. Chem. Phys., 123: 044502.[64] Ziolek M, Lorenc M, Naskrecki R. Determination of the temporal response function in femtosecond pump-probe systems[J]. 2001, Appl. Phys. B, 72: 843-847.[65] Kovalenko S A, Dobryakov A L, Ruthmann J, Ernsting N P. Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing[J]. 1999, Phys. Rev. A, 59: 2369-2384.[66] Oleinick N L, Morris R L, Belichenko I. The role of apoptosis in response to photodynamic therapy: what, where, why, and how[J]. 2002, Photochem. Photobiol. Sci., 1: 1-12.[67] Cheng Y, Cheng H, Jiang C, Qiu X, Wang K, Huan W, Yuan A, Wu J, Hu Y. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy[J]. 2015, Nature Comm., 6: 8785.[68] Morris R L, Azizuddin K, Lam M, Berlin J, Nieminen A L, Kenney M E, Samia A C S, Burda C, Oleinick N L Fluorescence resonance energy transfer reveals a binding site of a photosensitizer for photodynamic therapy[J]. 2003, Cancer Res., 63: 5194-5197.[69] Cosa G. Photodegradation and photosensitization in pharmaceutical products: assessing drug phototoxicity[J]. 2004, Pure Appl. Chem., 76, 263-275.[70] Pogue B W, Momma T, Wu H C, Hasan T. Transient absorption changes in vivo during photodynamic therapy with pulsed laser light[J]. 1999, British J. Cancer, 80: 344-351.[71] Schuster G B. Long-range charge transfer in DNA: transient structural distortions control the distance dependence[J]. 2000, Acc. Chem. Res., 33: 253-260.[72] Shao F W, Augustyn K, Barton J K. Sequence dependence of charge transport through DNA domains[J]. 2005, J. Am. Chem. Soc., 127: 17445-17452.[73] Bergeron F, Nair V K, Wagner J R. Near-UV induced interstrand cross-links in anthraquinone-DNA duplexes[J]. 2006, J. Am. Chem. Soc., 128: 14798-14799.[74] Williams T T, Dohno C, Stemp E D A, Barton J K. Effects of the photooxidant on DNA-mediated charge transport[J]. 2004, J. Am. Chem. Soc., 126: 8148-8158.[75] Qu X, Wan C, Becker H, Zhong D, Zewail A H. The anticancer drug–DNA complex: Femtosecond primary dynamics for anthracycline antibiotics function[J]. 2001, Proc. Natl. Acad. Sci., 98: 14212-14217.[76] Armitage B, Yu C J, Devadoss C, Schuster G B. Cationic anthraquinone derivatives as catalytic DNA photonucleases: mechanisms for DNA damage and quinone recycling[J]. 1994, J. Am. Chem. Soc., 116: 9847-9859.[77] Sun S. Zhang S, Liu K, Wang Y P, Zhou M M, Zhang B. Excited state intramolecular proton transfer of 1-hydroxyanthraquinone[J]. 2015, Chin. J. Chem. Phys. 28: 545-551.[78] Sigman D S, Mazumder A, Perrin D M. Chemical nucleases[J]. 1993, Chem. Rev., 93: 2295-2316.[79] McKnight R E, Zhang J G, Dixon D W. Binding of a homologous series of anthraquinones to DNA[J]. 2004, Bioorg. Med. Chem. Lett., 14: 401-404.[80] Breslin D T, Coury J E, Anderson J R, McFail-Isom L, Kan Y, Williams L D, Bottomley L A, Schuster G B. Anthraquinone photonuclease structure determines its mode of binding to DNA and the cleavage chemistry observed[J]. 1997, J. Am. Chem. Soc., 119: 5043-5044.[81] Carmieli R, Smeigh A L, Conron S M M, Thazhathveetil A K, Fuki M, Kobori Y, Lewis F D, Wasielewski M R. Structure and dynamics of photogenerated triplet radical ion pairs in DNA hairpin conjugates with anthraquinone end caps[J]. 2012, J. Am. Chem. Soc., 134: 11251-11260.[82] Müller C, Schroeder J, Troe J. Intramolecular hydrogen bonding in 1, 8-dihydroxyanthraquinone, 1-aminoanthraquinone, and9-hydroxyphenalenone studied by picosecond time-resolved fluorescence spectroscopy in a supersonic jet[J]. 2006, J. Phys. Chem. B, 110: 19820-19832.[83] Joh N H, Oberai A, Yang D, Whitelegge J P, Bowie J U. Similar energetic contributions of packing in the core of membrane and water-soluble proteins[J]. 2009, J. Am. Chem. Soc., 131: 10846-10847.[84] Hanlon S. The importance of London dispersion forces in the maintenance of thedeoxyribonucleic acid helix[J]. 1966, Biochem. Biophys. Res. Comm., 23: 861-867.[85] Canuto S. Solvation effects on molecules and biomolecules: computational methods and applications. Springer Netherlands, 2008.[86] Funk D J, Oldenburg R C, Dayton D P, Lacosse J P, Draves J A, Logan T J. Gas-phase absorption and laser-induced fluorescence measurements of representative polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and a polycyclic aromatic hydrocarbon[J]. 1995, Appl. Spectrosc., 49: 105-114.[87] Alawi M, Wichmann H, Lorenz W, Bahadir M. Dioxins and furans in the Jordanian environment part 2: Levels of PCDD and PCDF in human milk samples from Jordan[J]. 1996, Chemosphere, 33: 2469-2474.[88] Aylward L L, Hays S M, Karch N J, Paustenbach D J. Relative susceptibility of animals and humans to the cancer hazard posed by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin using internal measures of dose[J]. 1996, Environmental Sci. Tech., 30: 3534-3543.[89] Faroon O, Jones D, De Rosa C. Effects of polychlorinated biphenyls on the nervous system[J]. 2000, Toxicol. Indust Health, 16: 305-333.[90] Lehn J M. Supramolecular chemistry-scope and perspectives molecules, supermolecules, andmolecular devices (Nobel Lecture) [J]. 1988, Angew. Chem. Int. Ed., 27: 89-112.[91] ?erny J, Hobza P. Non-covalent interactions in biomacromolecules[J]. 2007, Phys. Chem. Chem. Phys., 9: 5291-5303.[92] Meyer E A, Castellano R K, Diederich F. Interactions with aromatic rings in chemical and biological recognition[J]. 2003, Angew. Chem. Int. Ed., 42: 1210-1250.[93] Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Highly efficient organic light-emitting diodes from delayed fluorescence. 2012, Nature, 492: 234-238.[94] Fang C, Frontiera R R, Tran R, Mathies R A. Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy[J]. 2009, Nature, 462: 200-205.[95] Chen C L, Chen Y T, Demchenko A P, Chou P T. Amino proton donors in excited-state intramolecular proton-transfer reactions[J]. 2018, Nature Rev. Chem., 2: 131-143.[96] Jacquemin D, Zú?iga J, Requena A, Céron-Carrasco J P. Assessing the importance of proton transfer reactions in DNA[J]. 2014, Acc. Chem. Res., 47: 2467-2474.[97] Lim X. The nanolight revolution is coming[J]. 2016, Nature, 531: 26–28.[97] Vrakking M J?J. Control of attosecond entanglement and coherence[J]. 2021, Phys. Rev. Lett., 126: 113203.[98] Bertolino M, Dahlstr?m J M. Multiphoton interaction phase shifts in attosecond science[J]. 2021, Phys. Rev. Research, 3: 013270.[99] Dombi P, Pápa Z, Vogelsang J, Yalunin S V, Sivis M, Herink G, Sch?fer S, Gro? P, Ropers C, Lienau C. Strong-field nano-optics[J]. 2020, Rev. Mod. Phys., 92: 025003.[100] Chergui M, Collet E. Photoinduced structural dynamics of molecular systems mapped by time-resolved X-ray methods[J]. 2017, Chem. Rev., 117: 11025-11065.[101] Maiuri M, Garavelli M, Cerullo G. Ultrafast Spectroscopy: State of the art and open challenges[J]. 2020, J. Am. Chem. Soc. 142: 3-15.[102] Guo Z, Wan Y, Yang M, Snaider J, Zhu K, Huang L. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy[J]. 2017, Science, 356: 59-62.[103] Nah S, Spokoyny B, Stoumpos C, Soe C M M, Kanatzidis M, Harel E. Spatially segregated free-carrier and exciton populations in individual lead halide perovskite grains[J]. 2017, Nature Photon., 11: 285.[104] Schnedermann C, Lim J M, Wende T, Duarte A S, Ni L, Gu Q, Sadhanala R. A., Kukura, P. Sub-10 fs time-resolved vibronic optical microscopy[J]. 2016, J. Phys. Chem. Lett., 7: 4854-4859.[105] Chen A J, Yuan X, Li J, Dong P, Hamza I, Cheng J. label-free imaging of heme dynamics in living organisms by transient absorption microscopy[J]. 2018, Anal. Chem., 90: 3395-3401. |
[1] | 陈珂 马凤翔 赵跃 李辰溪 安冉 朱峰 杭忱. 基于光纤光声传感的油中溶解气体分析系统[J]. 量子电子学报, 2023, 40(4): 597-605. |
[2] | 曹冬梅, 李永放 . 领结状金纳米二聚体耦合共振特性研究[J]. 量子电子学报, 2023, 40(4): 606-613. |
[3] | 费晔, 孙仲谋, 田东鹏, 刘骁源, 刘玉柱, . 基于激光诱导击穿光谱的果木炭燃烧对空气成分影响的研究[J]. 量子电子学报, 2023, 40(4): 436-446. |
[4] | 王海青 , 施 卫 . THz-ATR 技术检测生物医学样品的研究进展[J]. 量子电子学报, 2023, 40(3): 319-332. |
[5] | 曾子威 , 李宏光 , 郭宇烽 , 廖文焘 . 隐匿危险品高准确度太赫兹光谱识别方法[J]. 量子电子学报, 2023, 40(3): 340-348. |
[6] | 白岩冰, 张梦圆, 朱梦琪, 李 旭, 闫佳玉, 张存林, 左 剑, . α-乳糖一水合物太赫兹动力学研究[J]. 量子电子学报, 2023, 40(3): 349-359. |
[7] | 葛宏义 , 王 飞 , 蒋玉英 , 李 丽 , 张 元 , 贾柯柯 , . 基于宽度学习的太赫兹光谱图像小麦霉变识别研究[J]. 量子电子学报, 2023, 40(3): 360-368. |
[8] | 张冉冉 , 应璐娜 , 周卫东. 相关向量机结合主成分分析应用于 LIBS 技术定量分析[J]. 量子电子学报, 2023, 40(3): 376-382. |
[9] | 杨 金, , 王云峰, , 储玲巧 , 蒋华超 , 苏付海 ∗. 少层 PtSe2 中光生载流子超快动力学研究[J]. 量子电子学报, 2023, 40(2): 282-292. |
[10] | 王泽育, 崔琪, 和小虎, 卢丹华, 邱选兵 何秋生, 赖云忠, 李传亮∗. I2+ 离子低能电子态的计算和光谱研究[J]. 量子电子学报, 2022, 39(4): 477-484. |
[11] | 徐鹏, 贾韧, 姚关心, 秦正波, 郑贤锋, 杨新艳, 崔执凤, . 混合水溶液中金属元素的偏最小二乘法激光诱导击穿光谱[J]. 量子电子学报, 2022, 39(4): 485-493. |
[12] | 于玮, 周卓彦, 孙仲谋, 张兴龙, 刘玉柱, . 激光诱导击穿光谱技术实时检测蔷薇属植物[J]. 量子电子学报, 2022, 39(4): 494-501. |
[13] | 丁伯坤, 邵李刚, 王坤阳, 陈家金, 王贵师, 刘锟, 梅教旭, 谈图, 高晓明, ∗. 基于离轴积分腔的海水溶解气体实时检测技术研究[J]. 量子电子学报, 2022, 39(4): 502-510. |
[14] | 马凤翔, 赵跃, 崔方晓∗, 李大成. 基于支持向量回归的光声光谱信号 温度和湿度校正方法[J]. 量子电子学报, 2022, 39(4): 511-518. |
[15] | 张云琪, 崔超远, 陈永, 鲁翠萍. 苹果酸度可见-近红外无损测定模型设计与优化[J]. 量子电子学报, 2022, 39(4): 531-540. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||