[1] Yanovsky V P, Chvykov V, Kalinchenko G, et al. Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate[J]. Optics Express, 2008, 16(3):2109-2114.[2] Tomov I V, Fedosejevs R,Richardson M C, et al. Picosecond gain and saturation measurements of the 353‐nm XeF laser line[J]. Applied Physics Letters, 1977, 31(11):747-749.[3] He Liwen, Fang Xiaodong. Progress of application of excimer laser micromecining [J].Chinese Journal of Quantum Electronics,2018,35(06):641-648(in Chinese).何立文,方晓东.准分子激光微加工应用研究进展[J].量子电子学报,2018,35(06):641-648. [4] Nishizawa, N. Ultrashort pulse fiber lasers and their applications[J]. Japanese Journal of Applied Physics, 2014, 53(9):090101.[5] S. Szatmári. High-brightness ultraviolet excimer lasers[J]. Applied Physics B, 1994, 58(3):211-223.[6] Glownia J H, Kaschke M, Sorokin P P. Amplification of 193-nm femtosecond seed pulses generated by third-order, nonresonant, difference-frequency mixing in xenon[J]. Optics Letters, 1992, 17(5):337-9.[7] Mcintyre I A, Rhodes C K. High power ultrafast excimer lasers[J]. Journal of Applied Physics, 1991, 69(1):R1-R19.[8] Wang Zhao, Zhang ji, Li Jing, et al. Amplification and beam combination of ultra-short KrF laser pulse[J].High Power Laser and Particle Beams, 2020,32(1):81-84(in Chinese).王钊,张骥,李静, 等.氟化氪短脉冲激光的放大和组束研究[J].强激光与粒子束,2020,32(1):81-84. [9] Tang Xiuzhang. Study on the ultraviolet ultrashort pulse amplification by KrF excimer laser[D].Beijing: DoctorialDissertation of China institute of atomic energy,2001(in Chinese).汤秀章. KrF准分子激光器放大紫外超短脉冲的研究[D]. 中国原子能科学研究院, 2001.[10] Zhou Hui. Study on the generation of UV and VUV ultrashort pulses and the applications[D]. Shanghai: DoctorialDissertation of East China Normal University, 2014(in Chinese). 周慧. 紫外与真空紫外超短脉冲的产生及应用[D]. 华东师范大学, 2014.[11] Glownia J H, Arjavalingam G, Sorokin P P, et al. Amplification of 350-fsec pulses in XeCl excimer gain modules[J]. Optics Letters, 1986, 11(2):79.[12] Szatmári S, Rácz B, Sch?ffer P F, et al. Bandwidth limited amplification of 220 fs pulses in XeCl[J]. Optics Communications, 1987,62(4),271-276.[13] Hofinann T, Mossavi K, Tittel F K, et al. Spectrally compensated sum-frequency mixing scheme for generation of broadband radiation at 193 nm[J]. Optics Letters, 1992, 17(23):1691.[14] Stamm U, Kleinschmidt J, Voss F, et al. High repetition rate amplification of femtosecond pulses in the ultraviolet spectral range[J]. 1995.[15] Nabekawa Y, Sajiki K, Yoshitomi D, et al. High-repetition-rate high-average-power 300-fs KrF/Ti:sapphire hybrid laser[J]. Optics Letters, 1996, 21(9):647-649.[16] Sadovskii S P, Chizhov P A, Bukin V V, et al. Picosecond laser system with a wavelength of 193nm based on a solid-state Nd:YAG laser, parametric oscillator, and ArF amplifier[J]. Physics of Wave Phenomena, 2014, 22(4):223-226.[17] Kannari F, Obara M. Characteristics of amplification of ultrashort laser pulses in excimer media[C].Intl Symp on Gas Flow & Chemical Lasers. International Society for Optics and Photonics, 1991.[18] Momma C, Eichmann H, Jacobs H, et al. Short-pulse amplification and gain dynamics of an ArF excimer amplifier[J]. Optics Letters, 1993, 18(7):516-518.[19] Mossavi K, Hofmann T, G Szabó, et al. Femtosecond gain characteristics of the discharge-pumped ArF excimer amplifier[J]. Optics Letters, 1993, 18(6):435-437.[20] Mossavi K, Hofmann T, Tittel F K, et al. Ultrahigh-brightness, femtosecond ArF excimer laser system[J]. Applied Physics Letters, 1993, 62(11):1203-1205.[21] Nabekawa Y, Yoshitomi D, Sekikawa T, et al. High-average-power femtosecond KrF excimer laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(4):551-558.[22] Dadap J I, Focht G B, Reitze D H, et al. Two-photon absorption in diamond and its application to ultraviolet femtosecond pulse-width measurement[J]. Optics Letters, 1991, 16(7):499-501.[23] Omenetto F G, Schroeder W A, Boyer K, et al. Measurement of 160-fs, 248-nm pulses by two-photon fluorescence in fused-silica crystals[J]. Applied Opicst, 1997, 36(15):3421-3424.[24] Dai Xiaomin. Study on the measurement of UV femtosecond laser pulse duration[D]. Shanghai: Master’s Dissertation of East China Normal University, 2014(in Chinese). 戴小民.紫外飞秒激光脉冲宽度测量的研究[D].华东师范大学,2010[25] Marcus, Beutler, Masood, et al. Generation of sub-50-fs vacuum ultraviolet pulses by four-wave mixing in argon[J]. Optics Letters, 2010, 35(9):1491-1493.[26] Xu Yong-sheng, Zhang Ji, Zhang Haifeng, et al. Study on ultraviolet single shot autocorrelator based on transient grating diffraction[J]. Atomic Energy Sciende and Technology,2017, 51(3): 567-571(in Chinese). 徐永生,张骥,张海峰等. 瞬态光栅衍射法紫外单次自相关仪的研究[J]. 原子能科学技术, 2017, 51(3): 567-571.[27] Miyazaki K, Fukatsu T, Yamashita I, et al. Output and picosecond amplification characteristics of an efficient and high-power discharge excimer laser[J]. Applied Physics B, 1991, 52(1):1-7.[28] S. Szatmári, G. Almási, Simon P. Off-axis amplification scheme for short-pulse amplifiers[J]. Applied Physics B, 1991, 53(2):82-87.[29] Mossavi K, Hofmann T, Tittel F K, et al. Ultrahigh-brightness, femtosecond ArF excimer laser system[J]. Applied Physics Letters, 1993, 62(11):1203-1205.[30] Slattery S A, Nikogosyan D N. Two-photon absorption at 211 nm in fused silica, crystalline quartz and some alkali halides[J]. Optics Communications, 2003, 228(1-3):127-131. [31] Dragonmir A, Mcinerney J G, Nikogosyan D N. Femtosecond measurements of two-photon absorption coefficients at lambda = 264 nm in glasses, crystals, and liquids[J]. Applied Optics, 2002, 41(21):4365-4376.[32] Patankar S, Yang S T, Moody J D, et al. Two-photon absorption measurements of deep UV transmissible materials at 213nm[J]. Applied Optics, 2017, 56(30):8309-8312.[33] Kittelmann O, Ringling J. Intensity-dependent transmission properties of window materials at 193-nm irradiation[J]. Optics Letters, 1994, 19(24):2053-2055.[34] Taylor A J, Gibson R B, Roberts J P. Two-photon absorption at 248 nm in ultraviolet window materials[J]. Optics Letters, 1988, 13(10):814-816. |