[1] Seinfeld J H, Pandis S N. Atmospheric chemistry and physics: From air pollution to climate change (2nd edition)[M]. Inc., New York: John Wiley & Sons, 2006, Chapter 14.5.[2] Hallquist M, Wenger J C, Baltensperger U, et al. The formation, properties and impact of secondary organic aerosol: current and emerging issures[J]. Atmos. Chem. Phys., 2009, 9(14): 5155-5236.[3] Guenther A, Hewitt C N, Erickson D, et al. A global model of natural volatile organic compound emissions[J]. J. Geophys. Res., 1995, 100(D5): 8873-8892.[4] Biesenthal T A, Wu Q, Shepson P B, et al. A study of relationships between isoprene, its oxidation products, and ozone, in the Lower Fraster Valley, BC[J]. Atmos. Environ., 1997, 98: 2049-2058.[5] Claeys M, Graham B, Vas G, et al. Formation of secondary organic aerosols through photooxidation of isoprene[J]. Science, 2004, 303: 1173-1176.[6] Surratt J D, Murphy S M, Kroll J H, et al.Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene[J]. J. Phys. Chem., 2006(110), 9665-9674.[7] Ng N L, Kroll J H, Keywood M D, et al. Contribution of ?rst- versus second-generation products to secondary organic aerosols formed in the oxidation of biogenic hydrocarbons[J]. Environ. Sci. Technol., 2006, 40: 2283–2297. [8] Kroll J H, Ng N L, Murphy S M, et al. Secondary Organic Aerosol Formation from Isoprene Photooxidation[J]. Environ. Sci. Technol., 2006, 40: 1869-1877.[9] Pan G, Hu C J, Wang Z Y, et al. Direct detection of isoprene photooxidation products by using synchrotron radiation photoionization mass spectrometry[J]. Rapid Commun. Mass Spectrom., 2012, 26(2): 189-194.[10] Liu X Y, Zhang W J, Huang M Q, et al. Effect of illumination intensity and light application time on secondary organic aerosol formation from the photooxidation of α-pinene[J]. J. Environ. Sci-China., 2009, 21(4): 447-451.[11] Hao L Q, Wang Z Y, Huang M Q, et al. Size distribution of the Secondary Organic Aerosol Particles from the Photooxidation of Toluene[J]. J. Environ. Sci., 2005,17(6): 912-916.[12] Li JianQuan, Shen ChengYin, Wang HongMei, et al. Development and Validation of Proton Transfer Reaction Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry (分析化学), 2008, 36: 132-136(in Chinese).[13] Paulot F, Crounse J D, Kjaergaard H G, et al. Isoprene photooxidation: new insights into the production of acids and organic nitrates[J], Atmos. Chem. Phys. 2009, 9: 1479-1501. [14] Annmarie G C, Barbara J T, Ho-Jin L, et al. Link between isoprene and secondary organic aerosol (SOA): Pyruvic acid oxidation yields low volatility organic acids in clouds[J]. Geophys. Res. Lett, 2006, 33: 8272-8276. [15] Healy R M, Wenger J C, Metzger A, et al. Gas/particle partitioning of carbonyls in the photooxidation of isoprene and 1,3,5-trimethylbenzene[J]. Atmos. Chem. Phys. 2008, 8: 3215-3230.[16] Jenkin M E, Boyd A A, Lesclaux R. Peroxy radical kinetics resulting from the OH-initiated oxidation of 1,3-butadiene, 2,3-dimethyl-1,3-butadiene and isoprene[J]. J. Atmos. Chem., 1998, 29: 267–298. [17] Perria M J, Seitzinger S, Turpin B J. Secondary organic aerosol production from aqueous photooxidation of glycolaldehyde: Laboratory experiments[J]. Atmos. Environ., 2009, 43: 1487–1497. |