J4 ›› 2015, Vol. 32 ›› Issue (4): 438-444.

• 量子光学 • 上一篇    下一篇

最优相位协变量子克隆

张刚,潘国柱 ,袁好   

  1. 1  皖西学院机械与电子工程学院, 安徽 六安, 237012; 2 皖西学院材料与化工学院,安徽 六安 237017
  • 收稿日期:2015-04-01 修回日期:2015-04-07 出版日期:2015-07-28 发布日期:2015-08-04
  • 通讯作者: 张刚(1975-),安徽六安人,博士,副教授,主要研究方向:量子信息与量子计算。 E-mail:zhanggang@wxc.edu.cn
  • 基金资助:

    国家自然科学基金 (2013CB921804, 61370090),);安徽省自然科学基金 (1408085MA20)

Optimal phase-covariant quantum cloning

Zhang Gang, Pan Guozhu, Yuan Hao   

  1. 1 School of Mechanical and Electronic Engineering, West Anhui University, Lu’ an 237012, China;
     2 School of Material and Chemical Engineering, West Anhui University, Lu’ an 237012, China
  • Received:2015-04-01 Revised:2015-04-07 Published:2015-07-28 Online:2015-08-04

摘要:

在量子信息科学中,量子克隆理论是基础理论, 它提供量子密码术的绝对安全性. 我们得到d维空间最优1→M=d+1相位协变量子克隆的具体变换, 然后将这种克隆机推广到1→M=kd+1 (k为整数)情况, 并得到具体的变换. 利用2维空间非最优2→M=2k+1相位协变量子克隆的形式, 我们得到最优的克隆变换. 两种类型的量子克隆机的拷贝忠信度符合已有的理论值.

关键词: 量子信息, 量子密码术, 量子克隆, 普适量子克隆, 相位协变量子克隆

Abstract:

In quantum information science, quantum cloning theory is a basic one that provides an absolute security of quantum cryptography. We derive the explicit transformations of the optimal 1→M=d+1 phase-covariant quantum cloning in d dimensions, and then generalize this kind of cloning machine to the 1→M=kd+1 (k integer) case and obtain the explicit transformation. By exploiting the formulation of the nonoptimal 2→M=2k+1 phase-covariant quantum cloning in 2 dimensions, we derive the optimal cloning transformation. The copy fidelities of the two kinds of cloning machines are coincident with the theoretical values found.

Key words: Quantum information, Quantum cryptography, Quantum cloning, Universal quantum cloning, Phase-covariant quantum cloning

中图分类号: