[1] Thorpe M J, Moll K D, Jones R J, et al. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection [J]. Science, 2006, 311(5767): 1595-1599.[2] Goldenstein C S, Spearrin R M, Jeffries J B, et al. Infrared laser-absorption sensing for combustion gases [J]. Progress in Energy and Combustion Science, 2017, 60: 132-176.[3] Yang S X, Jiang C B, Wei S H. Gas sensing in 2D materials [J]. Applied Physics Reviews, 2017, 4(2): 021304.[4] Hodgkinson J, Tatam R P. Optical gas sensing: a review [J]. Measurement Science & Technology, 2013, 24(1): 012004.[5] Liu X, Cheng S T, Liu H, et al. A Survey on Gas Sensing Technology [J]. Sensors, 2012, 12(7): 9635-9665.[6] Werle P. A review of recent advances in semiconductor laser based gas monitors [J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 1998, 54(2): 197-236.[7] Hymans A J, Lait J. Analysis of a frequency-modulated continuous-wave ranging system [J]. Proc. IEEE, 1960, 107: 365-372.[8] Culshaw B, Giles I P. Frequency modulated heterodyne optical fiber Sagnac interferometer [J]. IEEE J. Quantum. Elect., 1982, 18: 690-693.[9] Dong Y K, Zhu Z D, Tian X N, et al. Frequency-Modulated Continuous-Wave LIDAR and 3D Imaging by Using Linear Frequency Modulation Based on Injection Locking [J]. Journal of Lightwave Technology, 2021, 39(8): 2275-2280.[10] Hariyama T, Sandborn P A M, Watanabe M, et al. High-accuracy range-sensing system based on FMCW using low-cost VCSEL [J]. Optics Express, 2018, 26(7): 9285-9297.[11] Lum D J, Knarr S H, Howell J C. Frequency-modulated continuous-wave LiDAR compressive depth-mapping [J]. Optics Express, 2018, 26(12): 15420-15435.[12] Soller B J, Gifford D K, Wolfe M S, et al. High resolution optical frequency domain reflectometry for characterization of components and assemblies [J]. Optics Express, 2005, 13(2): 666-674.[13] Ding Z Y, Wang C H, Liu K, et al. Distributed optical fiber sensors based on optical frequency domain reflectometry: a review [J]. Sensors, 2018, 18(4): 1072.[14] Werle P, Slemr F. Signal-to-noise ratio analysis in laser-absorption spectrometers using optical multipass cells [J]. Applied Optics, 1991, 30(4): 430-434.[15] White J U. Long optical paths of large aperture [J]. Journal of the Optical Society of America, 1942, 32(5): 285-288.[16] Herriott D, Kogelnik H, Kompfner R. Off-axis paths in spherical mirror interferometers [J]. Applied Optics, 1964, 3(4): 523-526.[17] Chernin S M, Barskaya E G. Optical multipass matrix systems [J]. Applied Optics, 1991, 30(1): 51-58.[18] Guo Y, Sun L Q. Compact optical multipass matrix system design based on slicer mirrors [J]. Applied Optics, 2018, 57(5): 1174-1181.[19] Silver J A. Simple dense-pattern optical multipass cells [J]. Applied Optics, 2005, 44(31): 6545-6556.[20] Das D, Wilson A C. Very long optical path-length from a compact multi-pass cell [J]. Applied Physics B-Lasers and Optics, 2011, 103(3): 749-754.[21] Cui R Y, Dong L, Wu H P, et al. Generalized optical design of two-spherical-mirror multi-pass cells with dense multi-circle spot patterns [J]. Applied Physics Letters, 2020, 116(9): 091103.[22] Zou M L, Yang Z, Sun L Q, et al. Acetylene sensing system based on wavelength modulation spectroscopy using a triple-row circular multi-pass cell [J]. Optics Express, 2020, 28(8): 11573-11582.[23] Tuzson B, Mangold M, Looser H, et al. Compact multipass optical cell for laser spectroscopy [J]. Optics Letters, 2013, 38(3): 257-259.[24] Graf M, Emmenegger L, Tuzson B. Compact, circular, and optically stable multipass cell for mobile laser absorption spectroscopy [J]. Optics Letters, 2018, 43(11): 2434-2437.[25] Mcmanus J B, Kebabian P L, Zahniser W S. Astigmatic mirror multipass absorption cells for long-path-length spectroscopy [J]. Applied Optics, 1995, 34(18): 3336-3348.[26] Nwaboh J A, Witzel O, Pogány A, et al. Optical path length calibration: a standard approach for use in absorption cell-based ir-spectrometric gas analysis [J]. International Journal of Spectroscopy, 2014, 2014: 132607.[27] Elandaloussi H, Rouille C, Marie-Jeanne P, et al. Modified Sagnac interferometer for contact-free length measurement of a direct absorption cell [J]. Applied Optics, 2016, 55(8): 1971-1977.[28] Du Z H, Gao H, Cao X H. Direct high-precision measurement of the effective optical path length of multi-pass cell with optical frequency domain reflectometer [J]. Optics Express, 2016, 24(1): 417-426.[29] Lou X T, Chen C, Feng Y B, et al. Simultaneous measurement of gas absorption spectra and optical path lengths in a multipass cell by FMCW interferometry [J]. Optics Letters, 2018, 43(12): 2872-2875.[30] Datta S, Sarkar S. A review on different pipeline fault detection methods [J]. Journal of Loss Prevention in the Process Industries, 2016, 41: 97-106.[31] Culshaw B, Kersey A. Fiber-optic sensing: a historical perspective [J]. Journal of Lightwave Technology, 2008, 26(9-12): 1064-1078.[32] Wang Z M, Chang T Y, Zeng X B, et al. Fiber optic multipoint remote methane sensing system based on pseudo differential detection [J]. Optics and Lasers in Engineering, 2019, 114: 50-59.[33] Mead M I, Popoola O A M, Stewart G B, et al. The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks [J]. Atmospheric Environment, 2013, 70: 186-203.[34] Kim H J, Lee J H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview [J]. Sensors and Actuators B-Chemical, 2014, 192: 607-627.[35] Stewart G, Tandy C, Moodie D, et al. Design of a fibre optic multi-point sensor for gas detection [J]. Sensors and Actuators B-Chemical, 1998, 51(1-3): 227-232.[36] Jin W. Performance analysis of a time-division-multiplexed fiber-optic gas-sensor array by wavelength modulation of a distributed-feed back laser [J]. Applied Optics, 1999, 38(25): 5290-5297.[37] Floridia C, Rosolem J B, Fracarolli J P V, et al. Evaluation of environmental influences on a multi-point optical fiber methane leak monitoring system [J]. Remote Sensing, 2019, 11(10): 1249.[38] Zhang Y, Zhang M, Jin W. Multi-point, fiber-optic gas detection with intra-cavity spectroscopy [J]. Optics Communications, 2003, 220(4-6): 361-364.[39] Lu M F, Nonaka K, Kobayashi H, et al. Quasi-distributed region selectable gas sensing for long distance pipeline maintenance [J]. Measurement Science and Technology, 2013, 24(9): 095104.[40] Yu H B, Jin W, Ho H L, et al. Multiplexing of optical fiber gas sensors with a frequency-modulated continuous-wave technique [J]. Applied Optics, 2001, 40(7): 1011-1020.[41] Ye F, Qian L, Qi B. Multipoint chemical gas sensing using frequency-shifted interferometry [J]. Journal of Lightwave Technology, 2009, 27(23): 5356-5364.[42] Lou X T, Feng Y B, Chen C, et al. Multi-point spectroscopic gas sensing based on coherent FMCW interferometry [J]. Optics Express, 2020, 28(6): 9014-9026.[43] Manakasettharn S, Takahashi A, Kawamoto T, et al. Highlysensitive and exceptionally wide dynamic range detection of ammonia gas by indium hexacyanoferrate nanoparticles using FTIR spectroscopy [J]. Analytical Chemistry, 2018, 90(7): 4856-4862.[44] Sepman A, Ogren Y, Qu Z C, et al. Tunable diode laser absorption spectroscopy diagnostics of potassium, carbon monoxide, and soot in oxygen-enriched biomass combustion close to stoichiometry [J]. Energy & Fuels, 2019, 33(11): 11795-11803.[45] Witzel O, Klein A, Meffert C, et al. VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines [J]. Optics Express, 2013, 21(17): 19951-19965.[46] Dong L, Tittel F K, Li C G, et al. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing [J]. Optics Express, 2016, 24(6): A528-A535.[47] Zeninari V, Parvitte B, Courtois D, et al. Methane detection on the sub-ppm level with a near-infrared diode laser photoacoustic sensor [J]. Infrared Physics & Technology, 2003, 44(4): 253-261.[48] Wang Q, Wang Z, Ren W, et al. Fiber-ring laser intracavity QEPAS gas sensor using a 7.2 kHz quartz tuning fork [J]. Sensors and Actuators B-Chemical, 2018, 268: 512-518.[49] Jin W, Cao Y C, Yang F, et al. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range [J]. Nature Communications, 2015, 6: 6767.[50] Zhao P C, Zhao Y, Bao H H, et al. Mode-phase-difference photothermal spectroscopy for gas detection with an anti-resonant hollow-core optical fiber [J]. Nature Communications, 2020, 11(1): 847.[51] Hanf S, Bogozi T, Keiner R, et al. Fast and highly sensitive fiber-enhanced raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath [J]. Analytical Chemistry, 2015, 87(2): 982-988.[52] Qi Y, Zhao Y, Bao H H, et al. Nanofiber enhanced stimulated Raman spectroscopy for ultra-fast, ultra-sensitive hydrogen detection with ultra-wide dynamic range [J]. Optica, 2019, 6(5): 570-576.[53] Galli I, Bartalini S, Ballerini R, et al. Spectroscopic detection of radiocarbon dioxide at parts-per-quadrillion sensitivity [J]. Optica, 2016, 3(4): 385-388.[54] Zondlo M A, Paige M E, Massick S M, et al. Vertical cavity laser hygrometer for the National Science Foundation Gulfstream-V aircraft [J]. Journal of Geophysical Research-Atmospheres, 2010, 115: D20309.[55] Pogány A, Wagner S, Werhahn O, et al. Development and metrological characterization of a tunable diode laser absorption spectroscopy (TDLAS) spectrometer for simultaneous absolute measurement of carbon dioxide and water vapor [J]. Applied Spectroscopy, 2015, 69(2): 257-268.[56] Wang Z, Du Y J, Ding Y J, et al. A wide-range and calibration-free spectrometer which combines wavelength modulation and direct absorption spectroscopy with cavity ringdown spectroscopy [J]. Sensors, 2020, 20(3): 585.[57] Dong M, Zheng C T, Yao D, et al. Double-range near-infrared acetylene detection using a dual spot-ring Herriott cell (DSR-HC) [J]. Optics Express, 2018, 26(9): 12081-12091.[58] Lou X T, Feng Y B, Yang S H, et al. Ultra-wide-dynamic-range gas sensing by optical pathlength multiplexed absorption spectroscopy [J]. Photonics Research, 2021, 9(2): 193-201. |