量子电子学报 ›› 2021, Vol. 38 ›› Issue (6): 699-726.doi: 10.3969/j.issn.1007-5461.2021.06.001
• "激光光谱新技术与应用”专辑(续) • 下一篇
吴 涛1,2 , 胡仁志1∗ , 谢品华1,2,3,4∗ , 王家伟1,2 , 刘文清1,2,3,4
收稿日期:
2021-07-02
修回日期:
2021-08-15
出版日期:
2021-11-28
发布日期:
2021-11-28
通讯作者:
E-mail: rzhu@aiofm.ac.cn; phxie@aiofm.ac.cn
E-mail:E-mail: rzhu@aiofm.ac.cn; phxie@aiofm.ac.cn
作者简介:
吴 涛 ( 1996 - ), 安徽池州人, 博士生, 主要从事高灵敏气体在线探测, 光纤分布式传感以及电子线路技术方面的研究。
E-mail: wutaoxs@mial.ustc.edu.cn
基金资助:
WU Tao 1,2 , HU Renzhi 1∗ , XIE Pinhua 1,2,3,4∗ , WANG Jiawei 1,2 , LIU Wenqing 1,2,3,4
Received:
2021-07-02
Revised:
2021-08-15
Published:
2021-11-28
Online:
2021-11-28
摘要: 甲醛 (HCHO) 是一种重要的大气反应活性指示剂和城市大气气溶胶的前体物, 影响着对流层中的氧化 容量。此外, 作为一种有毒气体, 过量的 HCHO 还会对人体健康造成极大的危害, 因而实现 HCHO 的痕量检测 有着十分重要的意义。综述了国内外 HCHO 痕量探测的研究进展, 对 HCHO 的探测方法特别是光谱学探测方 法, 从探测原理、探测谱线以及光源的应用等多方面进行了详细的介绍。此外, 对比了几种典型的 HCHO 标定 装置, 并从探测灵敏度、响应度、选择性、成本以及集成化等多个方面对不同痕量 HCHO 光谱学探测技术进行 了分析与总结, 最后对不同探测技术的外场测量应用进行了介绍。
中图分类号:
吴 涛, 胡仁志∗, 谢品华, ∗, 王家伟, 刘文清, . 大气 HCHO 光谱学探测技术研究进展[J]. 量子电子学报, 2021, 38(6): 699-726.
WU Tao , , HU Renzhi ∗ , XIE Pinhua , ∗ , WANG Jiawei , , LIU Wenqing . Research progress of atmospheric HCHO spectroscopy detection technology[J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 699-726.
[1] EZZELL C. OSHA standards [J]. Nature, 1988, 333(6174): 590-.[2] JAMES J T. Spacecraft Maximum Allowable Concentrations for Airborne Contaminants [J]. 2008, p.1-19.[3] GROSJEAN D, GROSJEAN E, MOREIRA L. Speciated ambient carbonyls in Rio de Janeiro, Brazil [J]. Environ Sci Technol, 2002, 36(7): 1389-95.[4] ZHANG J, HE Q, LIOY P. Characteristics of aldehydes: concentrations, sources, and exposures for indoor and outdoor residential microenvironments [J]. Environ Sci Technol, 1994, 28(1): 146-52.[5] CARTER W P L, WINER A M, PITTS J N. Major atmospheric sink for phenol and the cresols. Reaction with the nitrate radical [J]. Environ Sci Technol, 1981, 15(15): 829-31.[6] GROSJEAN E, GROSJEAN D, SEINFELD J H. Atmospheric Chemistry of 1-Octene, 1-Decene, and Cyclohexene: Gas-Phase Carbonyl and Peroxyacyl Nitrate Products [J]. Environ Sci Technol, 1996, 30(3): 1038-47.[7] HO K, LEE S, LOUIE P, et al. Seasonal variation of carbonyl compound concentrations in urban area of Hong Kong [J]. Atmospheric Environment, 2002, 36(8): 1259-65.[8] LI Q, SRITHARATHIKHUM P, OSHIMA M, et al. Development of novel detection reagent for simple and sensitive determination of trace amounts of formaldehyde and its application to flow injection spectrophotometric analysis [J]. Analytica chimica acta, 2008, 612(2): 165-72.[9] VISKARI E L, VARTIAINEN M, PASANEN P. Seasonal and diurnal variation in formaldehyde and acetaldehyde concentrations along a highway in Eastern Finland [J]. Atmospheric Environment, 2000, 34(6): 917-23.[10] Tan Peigong, Yu Yanbin, Jiang Haiwei, et al. Research progress of aldehydes and ketones carbonyl compounds in the atmosphere. [J]. Chinese Journal of Environmental Engineering, 1999, (4): 19-23.谭培功, 于彦彬, 蒋海威, et al. 大气中醛酮类羰基化合物的研究进展 [J]. 环境工程学报, 1999, 4): 19-23.[11] FELTHAM E J, ALMOND M J, MARSTON G, et al. Reactions of alkenes with ozone in the gas phase: a matrix-isolation study of secondary ozonides and carbonyl-containing reaction products [J]. Spectrochimica Acta Part A, 2000, 56(13): 2605-16.[12] FEHSENFELD F, CALVERT J, FALL R, et al. Emissions of Volatile Organic Compounds From Vegetation and the Implications for Atmospheric Chemistry [J]. Global Biogeochemical Cycles, 1992, 6(4): 389-430.[13] NIKI H, MAKER P D, SAVAGE C M, et al. Atmospheric ozone-olefin reactions [J]. Environ Sci Technol, 1983, 17(7): 312A.[14] KAMENS R M, GERY M W, JEFFRIES H E, et al. Ozone-Isoprene Reactions: Product Formation and Aerosol Potential [J]. Int J Chem Kinet, 1982, 14(9): 955-75.[15] PAULSON S E, SEINFELD J H. Development and evaluation of a photooxidation mechanism for isoprene [J]. Journal of Geophysical Research Atmospheres, 1992, 972(D18): 20703-15.[16] LING Z, GUO H, CHEN G, et al. Formaldehyde and Acetaldehyde at Different Elevations in Mountainous Areas in Hong Kong [J]. Aerosol Air Quality Research, 2016, 16(8): 1868-78.[17] LEUCHNER M, GHASEMIFARD H, LüPKE M, et al. Seasonal and Diurnal Variation of Formaldehyde and its Meteorological Drivers at the GAW Site Zugspitze [J]. Aerosol Air Quality Research, 2016, 16(3): 801-15.[18] GROSJEAN D. Formaldehyde and other carbonyls in Los Angeles ambient air [J]. Environmental Science Technology, 1982, 16(5): 254-62.[19] COOKE M C, UTEMBE S R, CARBAJO P G, et al. Impacts of formaldehyde photolysis rates on tropospheric chemistry [J]. Atmospheric Science Letters, 2010, 11(1): 33-8.[20] ABBOT, DORIAN S. Seasonal and interannual variability of North American isoprene emissions as determined by formaldehyde column measurements from space [J]. Geophys Res Lett, 2003, 30(17): 339-46.[21] MARTIN R V, PARRISH D D, RYERSON T B, et al. Evaluation of GOME satellite measurements of tropospheric NO2 and HCHO using regional data from aircraft campaigns in the southeastern United States [J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D24): 1-11.[22] T. N. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction [J]. Biochemical Journal, 1953, 55(3): 416-21.[23] ALTSHULLER A, MILLER D L, SLEVA S F. DETERMINATION OF FORMALDEHYDE IN GAS MIXTURES BY CHROMOTROPIC ACID METHOD [J]. Anal Chem, 1961, 33(4): 621-+.[24] SAWICKI E, MCPHERSON S, HAUSER T R. SPECTROPHOTOMETRIC DETERMINATION OF FORMALDEHYDE AND FORMALDEHYDE-RELEASING COMPOUNDS WITH CHROMOTROPIC ACID, 6-AMINO-1-NAPHTHOL-3-SULFONIC ACID (J ACID), AND 6-ANILINO-1-NAPHTHOL-3-SULFONIC ACID (PHENYL J ACID) [J]. Anal Chem, 1962, 34(11): 1460-&.[25] ZAFIRIOU O C, ALFORD J, HERRERA M, et al. FORMALDEHYDE IN REMOTE MARINE AIR AND RAIN - FLUX MEASUREMENTS AND ESTIMATES [J]. Geophys Res Lett, 1980, 7(5): 341-4.[26] SELIM S. SEPARATION AND QUANTITATIVE-DETERMINATION OF TRACES OF CARBONYL-COMPOUNDS AS THEIR 2,4-DINITROPHENYLHYDRAZONES BY HIGH-PRESSURE LIQUID-CHROMATOGRAPHY [J]. Journal of Chromatography, 1977, 136(2): 271-7.[27] KUWATA K, UEBORI M, YAMASAKI Y. DETERMINATION OF ALIPHATIC AND AROMATIC-ALDEHYDES IN POLLUTED AIRS AS THEIR 2,4-DINITROPHENYLHYDRAZONES BY HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY [J]. J Chromatogr Sci, 1979, 17(5): 264-8.[28] LOWE D C, SCHMIDT U. FORMALDEHYDE (HCHO) MEASUREMENTS IN THE NONURBAN ATMOSPHERE [J]. J Geophys Res-Oceans, 1983, 88(NC15): 844-58.[29] LOWE D C, SCHMIDT U, EHHALT D H. A NEW TECHNIQUE FOR MEASURING TROPOSPHERIC FORMALDEHYDE [CH2O] [J]. Geophys Res Lett, 1980, 7(10): 825-8.[30] FUNG K, GROSJEAN D. DETERMINATION OF NANOGRAM AMOUNTS OF CARBONYLS AS 2,4-DINITROPHENYLHYDRAZONES BY HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY [J]. Anal Chem, 1981, 53(2): 168-71.[31] TANNER R L, MENG Z. SEASONAL-VARIATIONS IN AMBIENT ATMOSPHERIC LEVELS OF FORMALDEHYDE AND ACETALDEHYDE [J]. Environ Sci Technol, 1984, 18(9): 723-6.[32] LIPARI F, SWARIN S J. 2,4-DINITROPHENYLHYDRAZINE-COATED FLORISIL SAMPLING CARTRIDGES FOR THE DETERMINATION OF FORMALDEHYDE IN AIR [J]. Environ Sci Technol, 1985, 19(1): 70-4.[33] COFER W R, EDAHL R A. A NEW TECHNIQUE FOR COLLECTION, CONCENTRATION AND DETERMINATION OF GASEOUS TROPOSPHERIC FORMALDEHYDE [J]. Atmospheric Environment, 1986, 20(5): 979-84.[34] FUSHIMI K, MIYAKE Y. CONTENTS OF FORMALDEHYDE IN THE AIR ABOVE THE SURFACE OF THE OCEAN [J]. J Geophys Res-Oceans, 1980, 85(NC12): 7533-6.[35] WISTHALER A, APEL E C, BOSSMEYER J, et al. Technical Note: Intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR [J]. Atmos Chem Phys, 2008, 8(8): 2189-200.[36] JUNKERMANN W, BURGER J M. A new portable instrument for continuous measurement of formaldehyde in ambient air [J]. J Atmos Ocean Technol, 2006, 23(1): 38-45.[37] ZHU M N, DONG H B, YU F, et al. A New Portable Instrument for Online Measurements of Formaldehyde: From Ambient to Mobile Emission Sources [J]. Environ Sci Technol Lett, 2020, 7(5): 292-7.[38] MULLER K. Determination of aldehydes and ketones in the atmosphere - A comparative long time study at an urban and a rural site in Eastern Germany [J]. Chemosphere, 1997, 35(9): 2093-106.[39] LINDINGER W, HANSEL A, JORDAN A J C. Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels [J]. 1999, 30(1): 347-75.[40] WARNEKE C, VERES P, HOLLOWAY J S, et al. Airborne formaldehyde measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial results [J]. Atmospheric Measurement Techniques, 2011, 4(10): 2345-58.[41] YUAN B, KOSS A R, WARNEKE C, et al. Proton-Transfer-Reaction Mass Spectrometry: Applications in Atmospheric Sciences [J]. Chem Rev, 2017, 117(21): 13187-229.[42] TUAZON E C, GRAHAM R A, WINER A M, et al. KILOMETER PATHLENGTH FOURIER-TRANSFORM INFRARED SYSTEM FOR STUDY OF TRACE POLLUTANTS IN AMBIENT AND SYNTHETIC ATMOSPHERES [J]. Atmospheric Environment, 1978, 12(4): 865-75.[43] TUAZON E C, WINER A M, PITTS J N. TRACE POLLUTANT CONCENTRATIONS IN A MULTIDAY SMOG EPISODE IN THE CALIFORNIA SOUTH COAST AIR BASIN BY LONG PATH-LENGTH FOURIER-TRANSFORM INFRARED-SPECTROSCOPY [J]. Environ Sci Technol, 1981, 15(10): 1232-7.[44] PLATT U, PERNER D, PATZ H W. SIMULTANEOUS MEASUREMENT OF ATMOSPHERIC CH2O, O3, AND NO2 BY DIFFERENTIAL OPTICAL-ABSORPTION [J]. Journal of Geophysical Research-Oceans and Atmospheres, 1979, 84(NC10): 6329-35.[45] STUTZ J, PLATT U. Improving long-path differential optical absorption spectroscopy with a quartz-fiber mode mixer [J]. Applied Optics, 1997, 36(6): 1105-15.[46] HARRIS G W, MACKAY G I, IGUCHI T, et al. Measurements of formaldehyde in the troposphere by tunable diode laser absorption spectroscopy [J]. J Atmos Chem, 1989, 8(2): 119-37.[47] P. W B. Design and performance of a tunable diode laser absorption spectrometer for airborne formaldehyde measurements [J]. Journal of Geophysical Research Atmospheres, 2003, 108(D12): -.[48] RELLA C, HOFFNAGLE J, FLECK D, et al. Quantification of Atmospheric Formaldehyde by Near-Infrared Cavity Ring-Down Spectroscopy; proceedings of the Agu Fall Meeting, F, 2017 [C].[49] GORROTXATEGI-CARBAJO P, FASCI E, VENTRILLARD I, et al. Optical-feedback cavity-enhanced absorption spectroscopy with a quantum-cascade laser yields the lowest formaldehyde detection limit [J]. Appl Phys B-Lasers Opt, 2013, 110(3): 309-14.[50] MELLER R, MOORTGAT G K. Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K in the wavelength range 225-375 nm [J]. J Geophys Res-Atmos, 2000, 105(D6): 7089-101.[51] WASHENFELDER R A, ATTWOOD A R, FLORES J M, et al. Broadband cavity enhanced spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde [J]. Atmospheric Measurement Techniques, 2016, 8(9): 9927-58.[52] Peng F M, Xie P H, Zhang Y H, et al. Study on the measurement method of formaldehyde in atmosphere by differential absorption spectrometry [J]. Journal of Atmospheric and Environmental Optics, 2008, 3(1): 47-51.彭夫敏, 谢品华, 张英华, et al. 大气中甲醛差分吸收光谱测量方法研究 [J]. 大气与环境光学学报, 2008, 3(1): 47-51.[53] CáRDENAS L M, BRASSINGTON D J, ALLAN B J, et al. Intercomparison of Formaldehyde Measurements in Clean and Polluted Atmospheres [J]. J Atmos Chem, 2000, 37(1): 53-80.[54] BECKER K H, SCHURATH U, TATARCZYK T. FLUORESCENCE DETERMINATION OF LOW FORMALDEHYDE CONCENTRATIONS IN AIR BY DYE LASER EXCITATION [J]. Applied Optics, 1975, 14(2): 310-3.[55] LIU J W, LI X, YANG Y M, et al. Sensitive Detection of Ambient Formaldehyde by Incoherent Broadband Cavity Enhanced Absorption Spectroscopy [J]. Anal Chem, 2020, 92(3): 2697-705.[56] PERNER D, EHHALT D H, PATZ H W, et al. OH - RADICALS IN LOWER TROPOSPHERE [J]. Geophys Res Lett, 1976, 3(8): 466-8.[57] DOOLY G, FITZPATRICK C, LEWIS E. Deep UV based DOAS system for the monitoring of nitric oxide using ratiometric separation techniques [J]. Sensors and Actuators B-Chemical, 2008, 134(1): 317-23.[58] CONSTANTIN D E, MERLAUD A, VAN ROOZENDAEL M, et al. Measurements of Tropospheric NO2 in Romania Using a Zenith-Sky Mobile DOAS System and Comparisons with Satellite Observations [J]. Sensors, 2013, 13(3): 3922-40.[59]Li Y J, Xie P H, Qin M, et al. inversion of formaldehyde in differential absorption spectra [J]. Spectroscopy and Spectral Analysis, 2009, 29(1): 196-200.李玉金, 谢品华, 秦敏, et al. 差分吸收光谱中甲醛的反演研究 [J]. 光谱学与光谱分析, 2009, 29(1): 196-200.[60] LAWSON D R, BIERMANN H W, TUAZON E C, et al. FORMALDEHYDE MEASUREMENT METHODS EVALUATION AND AMBIENT CONCENTRATIONS DURING THE CARBONACEOUS SPECIES METHODS COMPARISON STUDY [J]. Aerosol Science and Technology, 1990, 12(1): 64-76.[61] GRUTTER M, FLORES E, ANDRACA-AYALA G, et al. Formaldehyde levels in downtown Mexico City during 2003 [J]. Atmospheric Environment, 2005, 39(6): 1027-34.[62] HECKEL A, RICHTER A, TARSU T, et al. MAX-DOAS measurements of formaldehyde in the Po-Valley [J]. Atmos Chem Phys, 2005, 5(909-18.[63] SCHULTZ A, ZARE R N, CRUSE H W. LASER-INDUCED FLUORESCENCE - METHOD TO MEASURE INTERNAL STATE DISTRIBUTION OF REACTION PRODUCTS [J]. Journal of Chemical Physics, 1972, 57(3): 1354-&.[64] SINHA M P, SCHULTZ A, ZARE R N. INTERNAL STATE DISTRIBUTION OF ALKALI DIMERS IN SUPERSONIC NOZZLE BEAMS [J]. Journal of Chemical Physics, 1973, 58(2): 549-56.[65] CAZORLA M, WOLFE G M, BAILEY S A, et al. A new airborne laser-induced fluorescence instrument for in situ detection of Formaldehyde throughout the troposphere and lower stratosphere [J]. Atmospheric Measurement Techniques, 2015, 8(2): 541-52.[66] MOHLMANN G R. FORMALDEHYDE DETECTION IN AIR BY LASER-INDUCED FLUORESCENCE [J]. Applied Spectroscopy, 1985, 39(1): 98-101.[67] BURKERT A, GREBNER D, MULLER D, et al. Single-shot imaging of formaldehyde in hydrocarbon flames by XeF excimer laser-induced fluorescence [J]. Proc Combust Inst, 2000, 28(1655-61.[68] HOTTLE J R, HUISMAN A J, DIGANGI J P, et al. A laser induced fluorescence-based instrument for in-situ measurements of atmospheric formaldehyde [J]. Environmental Science Technology, 2009, 43(3): 790-5.[69] ST CLAIR J M, SWANSON A K, BAILEY S A, et al. A new non-resonant laser-induced fluorescence instrument for the airborne in situ measurement of formaldehyde [J]. Atmospheric Measurement Techniques, 2017, 10(12): 4833-44.[70] ST CLAIR J M, SWANSON A K, BAILEY S A, et al. CAFE: a new, improved nonresonant laser-induced fluorescence instrument for airborne in situ measurement of formaldehyde [J]. Atmospheric Measurement Techniques, 2019, 12(8): 4581-90.[71] FIEDLER S E, HOHEISEL G, RUTH A A, et al. Incoherent broad-band cavity-enhanced absorption spectroscopy of azulene in a supersonic jet [J]. Chemical Physics Letters, 2003, 382(3-4): 447-53.[72] GRILLI R, MEJEAN G, KASSI S, et al. Frequency Comb Based Spectrometer forin Situand Real Time Measurements of IO, BrO, NO2, and H2CO at pptv and ppqv Levels [J]. Environmental Science Technology, 2012, 46(19): 10704-10.[73] GRILLI R, MEJEAN G, ABD ALRAHMAN C, et al. Cavity-enhanced multiplexed comb spectroscopy down to the photon shot noise [J]. Physical Review A, 2012, 85(5): [74] BARRY H, CORNER L, HANCOCK G, et al. Cross sections in the 2ν5 band of formaldehyde studied by cavity enhanced absorption spectroscopy near 1.76 m [J]. Physical Chemistry Chemical Physics, 2002, 4(3): 445-50.[75] DAHNKE H, BASUM G V, KLEINERMANNS K, et al. Rapid Formaldehyde Monitoring in Ambient Air by Means of Mid-infrared Cavity Leak-out Spectroscopy [J]. 2002, 75(2): 311-6.[76] MINE Y, MELANDER N, RICHTER D, et al. Detection of formaldehyde using mid-infrared difference-frequency generation [J]. Applied Physics B, 1997, 65(6): 771-4.[77] LI Y Q, DEMERJIAN K L, ZAHNISER M S, et al. Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at Whiteface Mountain using a dual tunable diode laser system [J]. J Geophys Res-Atmos, 2004, 109(D16): 11.[78] LEI D, YAJUN Y, CHUNGUANG L, et al. Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell [J]. Optics Express, 2015, 23(15): 19821-30.[79] FRIED A, SEWELL S, HENRY B, et al. Tunable diode laser absorption spectrometer for ground-based measurements of formaldehyde [J]. J Geophys Res-Atmos, 1997, 102(D5): 6253-66.[80] Zhou Weidong, Ren Zhijun, Peng Baojin, et al. Determination of formaldehyde content in mixed gas by ring-down cavity spectroscopy [J]. Journal of Zhejiang Normal University (Natural Science Edition), 2007, 30(1): 11-5.周卫东, 任志君, 彭葆进, et al. 衰荡腔光谱技术检测混合气体中甲醛含量 [J]. 浙江师范大学学报(自然科学版), 2007, 30(1): 11-5.[81] PELTOLA J, VAINIO M, ULVILA V, et al. Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave optical parametric oscillator [J]. Applied Physics B, 2012, 107(3): 839-47.[82] STEFAN L, PAWEL K, ROBERT W, et al. Sensing of formaldehyde using a distributed feedback interband cascade laser emitting around 3493 nm [J]. Applied Optics, 2012, 51(25): 6009-13.[83] WERT B P, FRIED A, HENRY B, et al. Airborne measurements of tropospheric formaldehyde by tunable diode laser absorption spectroscopy [M]. 1996.[84] FRIED A, SEWELL S D, HENRY B E, et al. Ground-based tunable diode laser measurements of formaldehyde: improvements in system performance and recent field campaigns [J]. 1996, 18(2): 160-74.[85] FRIEDFELD S, FRASER M, LANCASTER D, et al. Field intercomparison of a novel optical sensor for formaldehyde quantification [J]. Geophys Res Lett, 2000, 27(14): [86] FRIED A, WERT B P, WALEGA J G, et al. Airborne measurements of formaldehyde employing a high-performance tunable diode laser absorption system; proceedings of the Diode Lasers and Applications in Atmospheric Sensing, F, 2002 [C].[87] FRIED A, LEE Y N, FROST G, et al. Airborne CH2O measurements over the North Atlantic during the 1997 NARE campaign: Instrument comparisons and distributions [J]. Journal of Geophysical Research Atmospheres, 2002, 107(D4): ACH-1-ACH -21.[88] FRIED A, WANG Y H, CANTRELL C, et al. Tunable diode laser measurements of formaldehyde during the TOPSE 2000 study: Distributions, trends, and model comparisons [J]. J Geophys Res-Atmos, 2003, 108(D4): [89] FRIED A, CRAWFORD J, OLSON J, et al. Airborne tunable diode laser measurements of formaldehyde during TRACE-P: Distributions and box model comparisons [J]. J Geophys Res-Atmos, 2003, 108(D20): [90] CHEN J H, SO S, LEE H S, et al. Atmospheric formaldehyde monitoring in the greater Houston area in 2002 [J]. Applied Spectroscopy, 2004, 58(2): 243-7.[91] WEIBRING P, RICHTER D, FRIED A, et al. Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance [J]. Applied Physics B, 2006, 85(2/3): 207-18.[92] WEIBRING P, RICHTER D, WALEGA J G, et al. Difference frequency generation spectrometer for simultaneous multispecies detection [J]. 2010, 18(26): 27670-81.[93] FANG B, YANG N, ZHAO W, et al. Improved spherical mirror multipass-cell-based interband cascade laser spectrometer for detecting ambient formaldehyde at parts per trillion by volume levels [J]. Applied Optics, 2019, 58(32): 8743-50.[94] CATOIRE V, BERNARD F, MéBARKI Y, et al. A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation [J]. 2012, 24(001): 22-33.[95] SCHILLER C L, BOZEM H, GURK C, et al. Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4 , N2O and HCHO [J]. Applied Physics B, 2008, 92(3): 419-30.[96] HERNDON S C, ZAHNISER M S, NELSON D D, et al. Airborne measurements of HCHO and HCOOH during the New England Air Quality Study 2004 using a pulsed quantum cascade laser spectrometer [J]. Journal of Geophysical Research Atmospheres, 2007, 112(D10): -.[97] GORROTXATEGI-CARBAJO P, FASCI E, VENTRILLARD I, et al. Optical-feedback cavity-enhanced absorption spectroscopy with a quantum-cascade laser yields the lowest formaldehyde detection limit [J]. Applied Physics B, 2013, 110(3): 309-14.[98] CHEN B, WANG J, SUN Y R, et al. Broad-Range Detection of Water Vapor using Cavity Ring-down Spectrometer [J]. Chin J Chem Phys, 2015, 28(4): 440-4.[99] Li Z B, Ma H L, Cao Z S, et al. Measurement of actual atmospheric CO2 in 2μm band with high sensitivity of off-axis integral cavity device [J].Acta Physica Sinica, 2016, 65(5): 53301-053301.李志彬, 马宏亮, 曹振松, et al. 2μm波段高灵敏度离轴积分腔装置实际大气CO2测量 [J]. 物理学报, 2016, 65(5): 53301-053301.[100]LANCASTER D G, FRIED A, ., WERT B, ., et al. Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde [J]. 2000, 39(24): 4436-43.[101]FRIED A, HENRY B, WERT B, et al. Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies [J]. Appl Phys B-Lasers Opt, 1998, 67(3): 317-30.[102]RICHTER D, FRIED A, WERT B P, et al. Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection [J]. Applied Physics B, 2002, 75(2-3): 281-8.[103]FAIST J, CAPASSO F, SIVCO D L, et al. QUANTUM CASCADE LASER [J]. Science, 1994, 264(5158): 553-6.[104]ZHOU W J, WU D H, MCCLINTOCK R, et al. High performance monolithic, broadly tunable mid-infrared quantum cascade lasers [J]. Optica, 2017, 4(10): 1228-31.[105]RAUTER P, CAPASSO F. Multi-wavelength quantum cascade laser arrays [J]. Laser Photon Rev, 2015, 9(5): 452-77.[106]RAZEGHI M, BANDYOPADHYAY N, BAI Y, et al. Recent advances in mid infrared (3-5 μm) Quantum Cascade Lasers [J]. Optical Materials Express, 2013, 3(11): 1872-84.[107]BANDYOPADHYAY N, BAI Y, TSAO S, et al. Room temperature continuous wave operation of lambda similar to 3-3.2 mu m quantum cascade lasers [J]. Appl Phys Lett, 2012, 101(24): 4.[108]WOLF J M, BISMUTO A, BECK M, et al. Distributed-feedback quantum cascade laser emitting at 3.2 μm [J]. Optics Express, 2014, 22(2): 2111-8.[109]LU Q Y, RAZEGHI M, SLIVKEN S, et al. High power frequency comb based on mid-infrared quantum cascade laser at lambda similar to 9 mu m [J]. Appl Phys Lett, 2015, 106(5): [110]HINKLEY E D, KELLEY P L. DETECTION OF AIR POLLUTANTS WITH TUNABLE DIODE LASERS [J]. Science, 1971, 171(3972): 635-&.[111]HANSCH T W, SHAHIN I S, SCHAWLOW A L. LASER SATURATION SPECTROSCOPY OF ATOMS [J]. IEEE J Quantum Electron, 1972, QE 8(6): 561-&.[112]HINKLEY E D. Tunable infra-red lasers and their applications to air pollution measurements [J]. Opto-electronics, 1972, 4(2): 69-86.[113]SLEMR F, HARRIS G W, HASTIE D R, et al. Measurement of Gas Phase Hydrogen Peroxide in Air by Tunable Diode Laser Absorption Spectrometry [J]. Journal of Geophysical Research Atmospheres, 1986, 91(D5): 5371-8.[114] SEWELL S, FRIED A, HENRY B, et al. A FIELD DIODE-LASER SPECTROMETER EMPLOYING AN ASTIGMATIC HERRIOTT CELL [M]. Bellingham: Spie - Int Soc Optical Engineering, 1994.[115]ZAHNISER M S, NELSON D D, MCMANUS J B, et al. MEASUREMENT OF TRACE GAS FLUXES USING TUNABLE DIODE-LASER SPECTROSCOPY [J]. Philos Trans R Soc A-Math Phys Eng Sci, 1995, 351(1696): 371-81.[116]HARDER J W, FRIED A, SEWELL S, et al. Comparison of tunable diode laser and long-path ultraviolet/visible spectroscopic measurements of ambient formaldehyde concentrations during the 1993 OH Photochemistry Experiment [J]. J Geophys Res-Atmos, 1997, 102(D5): 6267-82.[117]MACKAY G I, KARECKI D R, SCHIFF H I. Tunable diode laser absorption measurements of H2O2 and HCHO during the Mauna Loa Observatory Photochemistry Experiment [J]. Journal of Geophysical Research Atmospheres, 1996, 101(D9): [118]MüCKE R, SCHEUMANN B, SLEMR J, et al. Measurements of formaldehyde by tunable diode laser spectroscopy and the enzymatic-fluorometric method: An intercomparison study [J]. Infrared Physics Technology, 1996, 37(1): 29–32.[119]FRIED A, WEIBRING P, RICHTER D, et al. Tunable diode laser and difference frequency generation absorption spectrometers for highly sensitive airborne measurements of trace atmospheric constituents [M]//CHRISTESEN S D, SEDLACEK A J, GILLESPIE J B, et al. Chemical and Biological Sensors for Industrial and Environmental Monitoring Ii. 2006.[120]MCMANUS J B, ZAHNISER M S, NELSON D D. Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number [J]. Applied Optics, 2011, 50(4): 74-85.[121]CATOIRE V, BERNARD F, MBARKI Y, et al. A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation [J]. Journal of Environmental Sciences, 2012, 24(1): 22-33.[122]ROBERT C. Simple, stable, and compact multiple-reflection optical cell for very long optical paths [J]. Applied Optics, 2007, 46(22): 5408-18.[123]KAROL, KRZEMPEK, MOHAMMAD, et al. CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell [J]. Applied Physics B, 2013, 112(4): 461-5.[124]OVERTON G. METROLOGY: New multipass gas cells beat conventional designs [J]. LASER FOCUS WORLD, 2013, 49(8): 17-8.[125]CHUN-GUANG, LEI, YI-DING, et al. Compact mid-infrared trace gas detection system based on TDLAS and ICL [J]. Optics and Precision Engineering, 2018, 26(1855-61.[126]Yu Zhi-Wei, Pan Yu-Jue, Wang Qian, et al.Application of Fourier infrared spectroscopy in odor gas detection [J]. China Instruments & Meters, 2019, 2): 38-40.于志伟, 潘玉珏, 王倩, et al. 傅里叶红外光谱技术在恶臭气体检测中的应用 [J]. 中国仪器仪表, 2019, 2): 38-40.[127] Li Xiangxian, Xu Liang, Gao Minguang,, et al. A Fourier transform infrared spectrometer for the analysis of carbon isotope ratios of greenhouse gases and CO2 [J], 2014, 22(9): 2359-68.李相贤, 徐亮, 高闽光, et al. 分析温室气体及CO2碳同位素比值的傅里叶变换红外光谱仪 [J]. 光学精密工程, 2014, 22(9): 2359-68.[128]HORN D, PIMENTEL G C. 2.5-KM LOW-TEMPERATURE MULTIPLE-REFLECTION CELL [J]. Applied Optics, 1971, 10(8): 1892-&.[129]HAK C, PUNDT I, TRICK S, et al. Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air [J]. Atmos Chem Phys, 2005, 5(2881-900.[130]SUAREZ-BERTOA R, CLAIROTTE M, ARLITT B, et al. Intercomparison of ethanol, formaldehyde and acetaldehyde measurements from a flex-fuel vehicle exhaust during the WLTC [J]. Fuel, 2017, 203(330-40.[131]HERBELIN J M, MCKAY J A, KWOK M A, et al. Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method [J]. Applied Optics, 1980, 19(1): 144-7.[132]ANDERSON D Z, FRISCH J C, MASSER C S. Mirror reflectometer based on optical cavity decay time [J]. Applied Optics, 1984, 23(8): 1238.[133]OKEEFE A, DEACON D A G. Cavity Ring-down Optical Spectrometer for Absorption Measurements using Pulsed Laser Sources [J]. Review of Scientific Instruments, 1989, 59(12): 2544-51.[134]ROMANINI D, KACHANOV A A, SADEGHI N, et al. CW cavity ring down spectroscopy [J]. Chemical Physics Letters, 1997, 264(3-4): 316-22.[135]KLEINE D, MüRTZ M, LAUTERBACH J, et al. Atmospheric trace gas analysis with cavity ring-down spectroscopy [J]. Israel Journal of Chemistry, 2001, [136]DAHNKE H, BASUM G V, KLEINERMANNS K, et al. Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy [J]. Applied Physics B, 2002, 75(2-3): 311-6.[137]KONOPEL’KO L A, BELOBORODOV V V, RUMYANTSEV D V, et al. Metrological problems of gas analyzers based on wavelength-scanned cavity ring-down spectroscopy [J]. OPTICS AND SPECTROSCOPY, 2015, 118(6.[138]JOHN H, FLECK D, RELLA C, et al. Quantification of atmospheric formaldehyde by infrared absorption spectroscopy proceedings of the Agu Fall Meeting, F, 2017 [C].[139]O'KEEFE A. Integrated cavity output analysis of ultra-weak absorption [J]. Chemical Physics Letters, 1998, 293(5-6): 331-6.[140]ENGELN R, BERDEN G, PEETERS R, et al. Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy [J]. Review of Scientific Instruments, 1998, 69(11): 3763-9.[141]PAUL J B. Ultrasensitive Absorption Spectroscopy with a High-Finesse Optical Cavity and Off-Axis Alignment [J]. Applied Optics, 2001, 40(27): 4904.[142]MILLER J H, BAKHIRKIN Y A, AJTAI T, et al. Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser [J]. Applied Physics B, 2006, 85(2-3): 391.[143]HE Q, ZHENG C, LOU M, et al. Dual-feedback mid-infrared cavity-enhanced absorption spectroscopy for H2CO detection using a radio-frequency electrically-modulated interband cascade laser [J]. Optics Express, 2018, 26(12): 15436.[144]MADDALONI P, GAGLIARDI G, MALARA P, et al. Off-axis integrated-cavity-output spectroscopy for trace-gas concentration measurements: modeling and performance [J]. 2006, 23(9): 1938-45.[145]HEIKES B, MCCULLY B, ZHOU X, et al. Formaldehyde methods comparison in the remote lower troposphere during the Mauna Loa photochemistry experiment 2 [J]. J Geophys Res-Atmos, 1996, 101(D9): 14741-55.[146]ROLLER C, FRIED A, WALEGA J, et al. Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde [J]. Applied Physics B, 2006, 82(2): 247-64.[147] YAO C Y, WANG Z, WANG Q, et al. Interband cascade laser absorption sensor for real-time monitoring of formaldehyde filtration by a nanofiber membrane [J]. Applied Optics, 2018, 57(27): 8005-10.[148]PELTOLA J, VAINIO M, ULVILA V, et al. Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave optical parametric oscillator [J]. 2012, 107(3): 839-47.[149 MILLER J H, BAKHIRKIN Y A, AJTAI T, et al. Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser [J]. 2006, 85(2-3): 391.[150]DONG S, DASGUPTA P K. SOLUBILITY OF GASEOUS FORMALDEHYDE IN LIQUID WATER AND GENERATION OF TRACE STANDARD GASEOUS FORMALDEHYDE [J]. Environ Sci Technol, 1986, 20(6): 637-40.[151] Wang Manhua, Xie Pinhua, Min Qin, et al. Gradient measurement and analysis of formaldehyde in the atmosphere of Beijing city based on scanning DOAS system [J], Spectroscopy and Spectral Analysis, 2011, 31(3): 789-92王曼华, 谢品华, 敏 秦, et al. 基于扫描DOAS系统对北京城市大气中甲醛的梯度测量与分析 [J]. 光谱学与光谱分析, 2011, 31(3): 789-92.[152] HAMILL P, IRACI L T, YATES E L, et al. A New Instrumented Airborne Platform for Atmospheric Research [J]. Bulletin of the American Meteorological Society, 2016, 97(3): 397-404.[153] GLOWANIA M, ROHRER F, DORN H-P, et al. Comparison of formaldehyde measurements by Hantzsch, CRDS and DOAS in the SAPHIR chamber [M]. 2021.[154] CáRDENAS C, GUARIN C, STREMME W, et al. Formaldehyde total column densities over Mexico City: comparison between MAX-DOAS and solar absorption FTIR measurements [M]. 2020. |
[1] | 陈珂 马凤翔 赵跃 李辰溪 安冉 朱峰 杭忱. 基于光纤光声传感的油中溶解气体分析系统[J]. 量子电子学报, 2023, 40(4): 597-605. |
[2] | 曹冬梅, 李永放 . 领结状金纳米二聚体耦合共振特性研究[J]. 量子电子学报, 2023, 40(4): 606-613. |
[3] | 费晔, 孙仲谋, 田东鹏, 刘骁源, 刘玉柱, . 基于激光诱导击穿光谱的果木炭燃烧对空气成分影响的研究[J]. 量子电子学报, 2023, 40(4): 436-446. |
[4] | 王海青 , 施 卫 . THz-ATR 技术检测生物医学样品的研究进展[J]. 量子电子学报, 2023, 40(3): 319-332. |
[5] | 曾子威 , 李宏光 , 郭宇烽 , 廖文焘 . 隐匿危险品高准确度太赫兹光谱识别方法[J]. 量子电子学报, 2023, 40(3): 340-348. |
[6] | 白岩冰, 张梦圆, 朱梦琪, 李 旭, 闫佳玉, 张存林, 左 剑, . α-乳糖一水合物太赫兹动力学研究[J]. 量子电子学报, 2023, 40(3): 349-359. |
[7] | 葛宏义 , 王 飞 , 蒋玉英 , 李 丽 , 张 元 , 贾柯柯 , . 基于宽度学习的太赫兹光谱图像小麦霉变识别研究[J]. 量子电子学报, 2023, 40(3): 360-368. |
[8] | 张冉冉 , 应璐娜 , 周卫东. 相关向量机结合主成分分析应用于 LIBS 技术定量分析[J]. 量子电子学报, 2023, 40(3): 376-382. |
[9] | 杨 金, , 王云峰, , 储玲巧 , 蒋华超 , 苏付海 ∗. 少层 PtSe2 中光生载流子超快动力学研究[J]. 量子电子学报, 2023, 40(2): 282-292. |
[10] | 王泽育, 崔琪, 和小虎, 卢丹华, 邱选兵 何秋生, 赖云忠, 李传亮∗. I2+ 离子低能电子态的计算和光谱研究[J]. 量子电子学报, 2022, 39(4): 477-484. |
[11] | 徐鹏, 贾韧, 姚关心, 秦正波, 郑贤锋, 杨新艳, 崔执凤, . 混合水溶液中金属元素的偏最小二乘法激光诱导击穿光谱[J]. 量子电子学报, 2022, 39(4): 485-493. |
[12] | 于玮, 周卓彦, 孙仲谋, 张兴龙, 刘玉柱, . 激光诱导击穿光谱技术实时检测蔷薇属植物[J]. 量子电子学报, 2022, 39(4): 494-501. |
[13] | 丁伯坤, 邵李刚, 王坤阳, 陈家金, 王贵师, 刘锟, 梅教旭, 谈图, 高晓明, ∗. 基于离轴积分腔的海水溶解气体实时检测技术研究[J]. 量子电子学报, 2022, 39(4): 502-510. |
[14] | 马凤翔, 赵跃, 崔方晓∗, 李大成. 基于支持向量回归的光声光谱信号 温度和湿度校正方法[J]. 量子电子学报, 2022, 39(4): 511-518. |
[15] | 张云琪, 崔超远, 陈永, 鲁翠萍. 苹果酸度可见-近红外无损测定模型设计与优化[J]. 量子电子学报, 2022, 39(4): 531-540. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||