[1]Darwin C G.Notes on the theory of radiation[J]. Proceedings of the Royal Society of London. 1932, 136(829): 36-52.
[2]Allen L, Beijersbergen M W, Spreeuw R J C, et al.Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J].Physical Review A, 1992, 45(11):8185-
[3]Firth W J, Skryabin D V.Optical solitons carrying orbital angular momentum[J].Physical Review Letters, 1997, 79(13):2450-
[4]Soskin M S, Gorshkov V N, Vasnetsov M V, et al.Topological charge and angular momentum of light beams carrying optical vortices[J].Physical Review A, 1997, 56(5):4064-
[5]Zhan Q.Cylindrical vector beams: from mathematical concepts to applications[J].Advances in Optics and Photonics, 2009, 1(1):1-57
[6]Yao A M, Padgett M J.Orbital angular momentum: origins,behavior and applications[J].Advances in Optics and Photonics, 2011, 3(2):161-204
[7]王帅, 邓子岚, 王发强, 王晓雷, 李向平.光子角动量在环形金属纳米孔异常透射过程中的作用[J].物理学报, 2019, 68(07):261-267
[8]Wang S, Deng Z L, Cao Y, et al.Angular momentum-dependent transmission of circularly polarized vortex beams through a plasmonic coaxial nanoring[J].IEEE Photonics Journal, 2017, 10(1):1-9
[9]Hell S W, Wichmann J.Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J].Optics Letters, 1994, 19(11):780-782
[10]Liang L, Feng Z, Zhang Q, et al.Continuous-wave near-infrared stimulated-emission depletion microscopy using downshifting lanthanide nanoparticles[J]. Nature Nanotechnology, 2021: 1-6.
[11]Willig K I, Rizzoli S O, Westphal V, et al.STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J].Nature, 2006, 440(7086):935-939
[12]Wang B, Shi J, Zhang T, et al.Improved lateral resolution with an annular vortex depletion beam in STED microscopy[J].Optics Letters, 2017, 42(23):4885-4888
[13]Franke-Arnold S, Allen L, Padgett M.Advances in optical angular momentum[J].Laser & Photonics Reviews, 2008, 2(4):299-313
[14]Simpson N B, Allen L, Padgett M J.Optical tweezers and optical spanners with Laguerre–Gaussian modes[J].Journal of Modern Optics, 1996, 43(12):2485-2491
[15]Paterson L, MacDonald M P, Arlt J, et al.Controlled rotation of optically trapped microscopic particles[J].Science, 2001, 292(5518):912-914
[16]MacDonald M P, Paterson L, Volke-Sepulveda K, et al.Creation and manipulation of three-dimensional optically trapped structures[J].Science, 2002, 296(5570):1101-1103
[17]Grier D G.A revolution in optical manipulation[J].Nature, 2003, 424(6950):810-816
[18]Molina-Terriza G, Torres J P, Torner L.Twisted photons[J].Nature Physics, 2007, 3(5):305-310
[19]姜美玲, 张明偲, 李向平, 曹耀宇.超分辨光存储研究进展[J].光电工程, 2019, 46(03):82-93
[20]曹耀宇, 谢飞, 张鹏达, 李向平.双光束超分辨激光直写纳米加工技术[J].光电工程, 2017, 44(12):1133-1145
[21]Gan Z, Cao Y, Evans R A, et al.Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J].Nature Communications, 2013, 4(1):1-7
[22]Li X, Cao Y, Tian N, et al.Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabitssecond data rate[J].Optica, 2015, 2(6):567-570
[23]Cao Y, Gan Z, Jia B, et al.High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization[J].Optics Express, 2011, 19(20):19486-19494
[24]Franke-Arnold S, Barnett S M, Padgett M J, et al.Two-photon entanglement of orbital angular momentum states[J].Physical Review A, 2002, 65(3):033823-
[25]Stav T, Faerman A, Maguid E, et al.Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials[J].Science, 2018, 361(6407):1101-1104
[26]Mair A, Vaziri A, Weihs G, et al.Entanglement of the orbital angular momentum states of photons[J].Nature, 2001, 412(6844):313-316
[27]Vaziri A, Weihs G, Zeilinger A.Experimental two-photon,three-dimensional entanglement for quantum communication[J].Physical Review Letters, 2002, 89(24):240401-
[28]吕宏, 柯熙政.光束轨道角动量的量子通信编码方法研究[J].量子电子学报, 2010, 27(02):155-160
[29]丁冬生, 周志远, 史保森.高维量子态存储[J].量子电子学报, 2014, 31(04):442-448
[30]邓子岚, 涂清安, 李向平.多维度超表面及其在信息加密防伪上的应用[J].红外与激光工程, 2020, 49(09):80-95
[31]Dai Q, Ouyang M, Yuan W, et al.Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory[J].Advanced Materials, 2017, 29(35):1701918-
[32]Zijlstra P, Chon J W M, Gu M.Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J].Nature, 2009, 459(7245):410-413
[33]Xian M, Xu Y, Ouyang X, et al.Segmented cylindrical vector beams for massively-encoded optical data storage[J].Science Bulletin, 2020, 65(24):2072-2079
[34]Gu M, Li X, Cao Y.Optical storage arrays: a perspective for future big data storage[J].Light: Science & Applications, 2014, 3(5):e177-e177
[35]Li J X, Xu Y, Dai Q F, et al.Manipulating light–matter interaction in a gold nanorod assembly by plasmonic coupling[J].Laser & Photonics Reviews, 2016, 10(5):826-834
[36]Zhang Y, Han J, Shi L, et al.Extremely polarized and efficient hot electron intraband luminescence from aluminum nanostructures for nonlinear optical encoding[J].Laser & Photonics Reviews, 2021, 15(1):2000339-
[37]Li X, Lan T H, Tien C H, et al.Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam[J].Nature Communications, 2012, 3(1):1-6
[38]Zhu L, Cao Y, Chen Q, et al. Near-perfect fidelity polarization-encoded multilayer optical data storage based on aligned gold nanorods[J]. arXiv prep.[J].rXiv:2104.05903, 2021., rint, :-
[39]Li X, Chon J W M, Evans R A, et al.Quantum-rod dispersed photopolymers for multi-dimensional photonic applications[J].Optics Express, 2009, 17(4):2954-2961
[40]Deng Z L, Tu Q A, Wang Y, et al.Vectorial Compound Metapixels for Arbitrary Nonorthogonal Polarization Steganography[J]. Advanced Materials, 2021: 2103472.
[41]Li X, Chon J W M, Wu S, et al.Rewritable polarization-encoded multilayer data storage in 2,5-dimethyl-4-(p-nitrophenylazo) anisole doped polymer[J].Optics Letters, 2007, 32(3):277-279
[42]Ouyang X, Xu Y, Feng Z, et al.Polychromatic and polarized multilevel optical data storage[J].Nanoscale, 2019, 11(5):2447-2452
[43]Cumpston B H, Ananthavel S P, Barlow S, et al.Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication[J].Nature, 1999, 398(6722):51-54
[44]欧阳旭, 徐毅, 冼铭聪, 曹耀宇, 戴峭峰, 李向平, 兰胜.基于无序金纳米棒编码的多维光信息存储[J].光电工程, 2019, 46(03):57-69
[45]Deng Z L, Jin M, Ye X, et al.Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces[J].Advanced Functional Materials, 2020, 30(21):1910610-
[46]柯熙政, 郭新龙.用光束轨道角动量实现相位信息编码[J].量子电子学报, 2015, 32(01):69-76
[47]张文浩, 李成, 李威, 赵生妹.均衡下非对齐光子轨道角动量复用通信系统性能研究[J].量子电子学报, 2018, 35(06):723-729
[48]Zhan Q.Cylindrical vector beams: from mathematical concepts to applications[J].Advances in Optics and Photonics, 2009, 1(1):1-57
[49]Chong A, Wan C, Chen J, et al.Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum[J].Nature Photonics, 2020, 14(6):350-354
[50]Karimi E, Schulz S A, De Leon I, et al.Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J].Light: Science & Applications, 2014, 3(5):e167-e167
[51]Marrucci L, Karimi E, Slussarenko S, et al.Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications[J].Journal of Optics, 2011, 13(6):064001-
[52]Ni J, Huang C, Zhou L M, et al.Multidimensional phase singularities in nanophotonics[J].Science, 2021, 374(6566):e-a
[53]Sroor H, Huang Y W, Sephton B, et al.High-purity orbital angular momentum states from a visible metasurface laser[J].Nature Photonics, 2020, 14(8):498-503
[54]Forbes A, de Oliveira M, Dennis M R.Structured light[J].Nature Photonics, 2021, 15(4):253-262
[55]Cai X, Wang J, Strain M J, et al.Integrated compact optical vortex beam emitters[J].Science, 2012, 338(6105):363-366
[56]Barreiro J T, Wei T C, Kwiat P G.Beating the channel capacity limit for linear photonic superdense coding[J].Nature physics, 2008, 4(4):282-286
[57]Wang J, Yang J Y, Fazal I M, et al.Terabit free-space data transmission employing orbital angular momentum multiplexing[J].Nature Photonics, 2012, 6(7):488-496
[58]Yan Y, Xie G, Lavery M P J, et al.High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J].Nature Communications, 2014, 5(1):1-9
[59]Bozinovic N, Yue Y, Ren Y, et al.Terabit-scale orbital angular momentum mode division multiplexing in fibers[J].Science, 2013, 340(6140):1545-1548
[60]Ren H, Li X, Zhang Q, et al.On-chip noninterference angular momentum multiplexing of broadband light[J].Science, 2016, 352(6287):805-809
[61]Ouyang X, Xu Y, Xian M, et al.Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing. Nature. Photonics. (2021). https://doi.org/10.1038/s41566-021-00880-1
[62]Shen Y, Wang X, Xie Z, et al.Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J].Light: Science & Applications, 2019, 8(1):1-29
[63]Yang Q, Xie Z, Zhang M, et al. Generating tightly focused perfect optical vortex for ultra-secure optical encryption[J]. arXiv prep.[J].rXiv:2111.00773, 2021., rint, :-
[64]Wen Y, Chremmos I, Chen Y, et al.Spiral transformation for high-resolution and efficient sorting of optical vortex modes[J].Physical review letters, 2018, 120(19):193904-
[65]Yue Z, Ren H, Wei S, et al.Angular-momentum nanometrology in an ultrathin plasmonic topological insulator film[J].Nature communications, 2018, 9(1):1-7
[66]Zhang M, Ren H, Ouyang X, et al.Nanointerferometric Discrimination of the Spin–Orbit Hall Effect[J].ACS Photonics, 2021, 8(4):1169-1174
[67]Rubinsztein-Dunlop H, Forbes A, Berry M V, et al.Roadmap on structured light[J].Journal of Optics, 2016, 19(1):013001-
[68]胡涛, 潘孙翔, 王乐, 赵生妹.水下湍流对轨道角动量通信系统信道容量的影响[J].量子电子学报, 2018, 35(04):499-506
[69]Fang X, Ren H, Gu M.Orbital angular momentum holography for high-security encryption[J].Nature Photonics, 2020, 14(2):102-108
[70]Bliokh K Y, Rodríguez-Fortu?o F J, Nori F, et al.Spin–orbit interactions of light[J].Nature Photonics, 2015, 9(12):796-808
[71]Ren H, Briere G, Fang X, et al.Metasurface orbital angular momentum holography[J].Nature Communications, 2019, 10(1):1-8
|