[1] Salomon C, Hils D, and Hall J L. Laser stabilization at the millihertz level [J]. Journal of the Optical Society of America B,1998, 5(8): 1576-1587. [2]JiangYanyi, BiZhiyi, XuXinye,et al.Two-hertz-linewidth Nd:YAG lasers at 1064nm stabilized to vertically mounted ultra-stable cavities[J].Chinese Physics B(中国物理B),2008, 17(6):2152-2155. [3]TaiZhao-Yang,YanLu-Lu,ZhangYan-Yan, et al.Transportable 1555-nm Ultra-Stable Laser with Sub-0.185-Hz Linewidth[J].Chinese Physics Letters(中国物理快报),2017,34(9):90602. [4] Haefner S, Falke S, Grebing C, et al. 8 × 10-17 fractional laser frequency instability with a long room-temperature cavity [J]. Optics Letters,2015, 40(9): 2112-2115. [5] Matei D G, Legero T, Hafner S, et al. 1.5 μm Lasers with Sub-10 mHz Linewidth [J]. Physical Review Letters, 2017, 118(26): 263202. [6] Bloom B J, Nicholson T L, Williams J R, et al. An optical lattice clock with accuracy and stability at the 10-18 level [J]. Nature, 2014, 506(7486): 71-75. [7] Ludlow A D, Boyd M M, Ye J, et al. Optical atomic clocks [J]. Reviews of Modern Physics, 2015, 87(2): 637-701. [8] Huntemann N, Sanner C, Lipphardt B, et al. Single-Ion Atomic Clock with 3 × 10-18 Systematic Uncertainty [J]. Physical Review Letters, 2016, 116(6): 063001. [9] Huang Y, Guan H, Liu P, et al. Frequency Comparison of Two 40Ca+ Optical Clocks with an Uncertainty at the 10-17 Level [J]. Physical Review Letters, 2016, 116(1): 013001. [10] Hutson R, Campbell S, Marti E, et al. A Fermi-degenerate three-dimensional optical lattice clock [J]. Science, 2017, 358(6359):90-94. [11] Eisele C, Nevsky A Y, and Schiller S. Laboratory Test of the Isotropy of Light Propagation at the 10-17 Level [J]. Physical Review Letters, 2009, 103(9): 090401. [12] Chen Q, Magoulakis E, and Schiller S. High-sensitivity crossed-resonator laser apparatus for improved tests of Lorentz invariance and of space-time fluctuations [J]. Physical Review D, 2016, 93(2): 022003. [13] Hees A, Guena J, Abgrall M, et al. Searching for an Oscillating Massive Scalar Field as a Dark Matter Candidate Using Atomic Hyperfine Frequency Comparisons [J]. Physical Review Letters, 2016, 117(6): 061301. [14] Roberts B M, Blewitt G, Dailey C, et al. Search for domain wall dark matter with atomic clocks on board global positioning system satellites [J]. Nature Communications, 2017, 8(1): 1195. [15] Adhikari R X. Gravitational radiation detection with laser interferometry [J]. Reviews of Modern Physics, 2014, 86(1): 121-151. [16] Abbott B P, et al. Observation of Gravitational Waves from a Binary Black Hole Merger [J]. Physical Review Letters, 2016, 116(6): 061102. [17] Koller S B, Grotti J, Vogt S, et al. Transportable Optical Lattice Clock with 7 × 10-17 Uncertainty [J]. Physical Review Letters, 2017, 118(7): 073601. [18] Cao J, Zhang P, Shang J, et al. A compact, transportable single-ion optical clock with 7.8 × 10-17 systematic uncertainty [J]. Applied Physics B, 2017, 123(4): 112. [19] Chen L, Hall J L, Ye J, et al. Vibration-induced elastic deformation of Fabry-Perot cavities [J]. Physical Review A, 2006, 30(5): 053801. [20] Millo J, et al. Ultrastable lasers based on vibration insensitive cavities [J]. Physical Review A, 2009, 79(5): 053829. [21] Webster S and Gill P. Force-insensitive optical cavity [J]. Optics Letters, 2011, 36(18): 1539-4794. [22] Leibrandt D R, Thorpe M J, Notcutt M, et al. Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments [J]. Optics Express, 2011, 19(4): 1094-4087. [23] Chen Q F, Nevsky A, Cardace M, et al. A compact, robust, and transportable ultra-stable laser with a fractional frequency instability of 1 × 10-15 [J]. Review of Scientific Instruments, 2014, 85(11): 113107. [24] Kessler T, Legero T, and Sterr U. Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors [J]. Journal of the Optical Society of America B, 2010, 27(5): 914-919. [25] Numata K, Kemery A, and Camp J, Thermal-Noise Limit in the Frequency Stabilization of Lasers with Rigid Cavities [J]. Physical Review Letters, 2004, 93(25): 250602. |