量子电子学报 ›› 2025, Vol. 42 ›› Issue (6): 795-805.doi: 10.3969/j.issn.1007-5461.2025.06.007

• 激光技术与器件 • 上一篇    下一篇

基于数字 PID 的 DFB 激光器温度控制系统

余志超 1,2, 姚 路 2, 阚瑞峰 2, 孙方亮 1,2, 许振宇 2, 张先燚 1*   

  1. 1 安徽师范大学物理与电子信息学院, 安徽 芜湖 241002; 2 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
  • 收稿日期:2023-12-22 修回日期:2024-03-08 出版日期:2025-11-28 发布日期:2025-11-28
  • 通讯作者: E-mail: xyzhang@mail.ahnu.edu.cn E-mail:xyzhang@mail.ahnu.edu.cn
  • 作者简介:余志超 ( 1997 - ), 安徽安庆人, 研究生, 主要从事激光器温控技术方面的研究。 E-mail: zhichao_yu97@163.com
  • 基金资助:
    中国科学院合肥研究院院长基金 (YZJJ202302-CX), 中国科学院青年创新促进会 (2022451)

Temperature control system for DFB lasers based on digital PID

YU Zhichao 1,2 , YAO Lu2 , KAN Ruifeng2 , SUN Fangliang 1,2 YU Zhichao 1,2 , YAO Lu2 , KAN Ruifeng2 , SUN Fangliang 1,2 , XU Zhenyu2 , ZHANG Xianyi 1*   

  1. 1 School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China; 2 Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
  • Received:2023-12-22 Revised:2024-03-08 Published:2025-11-28 Online:2025-11-28

摘要: 分布式反馈 (DFB) 半导体激光器是基于可调谐半导体激光吸收光谱技术的气体传感器的核心元器件, 其输 出波长稳定性受到工作温度稳定性的影响。为了让DFB激光器提供稳定可靠的光源, 本文研制了一种基于积分分 离式比例-积分-微分算法的高稳定性激光器温度控制系统。该系统以激光器内部的热电制冷器 (TEC) 为控温元件, 负温度系数热敏电阻为测温元件, 分别设计了基于脉冲宽度调制技术的TEC驱动电路和高精度的温度采集电路。 利用该温度控制系统, 对1654 nm的DFB激光器进行了温度控制测试。实验结果表明, 该系统的温度控制范围在 15~35 ℃, 响应时间低于13 s, 系统2 h内的温度控制精度达到 ±0.002 ℃, 温度稳定性达到0.016%。使用该温控系统, DFB激光器在运行过程中状态稳定, 输出波长的标准差为0.00011 nm。

关键词: 光电子学, 分布式反馈半导体激光器, 比例-积分-微分算法, 高稳定性, 温度控制

Abstract: Distributed feedback (DFB) semiconductor lasers are core components of gas sensors based on tunable diode laser absorption spectroscopy technology, and their output wavelength stability is affected by the stability of operating temperature. In order to provide stable and reliable light source for DFB lasers, a high stability laser temperature control system based on an integral-separated proportionalintegral-derivative (PID) algorithm has been developed in this work. Using the thermoelectric cooler (TEC) inside the laser as the temperature control element and the negative temperature coefficient thermistor as the temperature measurement element, we design a TEC driving circuit based on pulse width modulation technology and a high-precision temperature acquisition circuit for the system, Using the temperature control system, the temperature control test of 1654 nm DFB laser is carried out. The experimental results show that the temperature control range of the system is 15~35 ℃, the response time is lower than 13 s, the temperature control accuracy of the system reaches ±0.002 ℃ within 2 hours, and the temperature stability reaches 0.016%. Using this temperature control system, the DFB laser operates stably with an output wavelength standard deviation of 0.00011 nm.

Key words: optoelectronics, distributed feedback semiconductor laser, proportional-integral-derivative algorithm, high stability, temperature control

中图分类号: