[1] Peters A, Chung K Y, Chu S. Measurement of gravitational acceleration by dropping atoms [J]. Nature, 1999, 400(6747):849-852
[2] McGuirk J M, Foster G T, Fixler J B, et al. Sensitive absolute-gravity gradiometry using atom interferometry [J]. Phys. Rev. A, 2002, 65(3):33608
[3] Fixler J B, Foster G T, McGuirk J M, et al. Atom interferometer measurement of the newtonian constant of gravity [J]. Science, 2007, 315(5808):74-77
[4] Bertoldi A, Lamporesi G, Cacciapuoti L, et al. Atom interferometry gravity- gradiometer for the determination of the Newtonian gravitational constant G [J]. Euro. Phys. J. D., 2006, 40(2):271-279
[5] Lamporesi G, Bertoldi A, Cacciapuoti L, et al. Determination of the newtonian gravitational constant using atom interferometry [J]. Phys. Rev. Lett., 2008, 100(5): 050801
[6] Gustavson T L, Landragin A, Kasevich M A. Rotation sensing with a dual atom-interferometer Sagnacgyroscope [J]. Class. Quantum Grav.,2000,17(12):2385- 2398
[7] Canuel B, Leduc F, Holleville D, et al. Six-axis inertial sensor using cold-atom interferometry [J]. Phys. Rev. Lett., 2006, 97(1):010402
[8] Durfee D S, Shaham Y K, Kasevich M A. Long-term stability of an area-reversible atom-interferometer sagnac gyroscope [J]. Phys. Rev. Lett., 2006, 97(24):240801
[9] Weiss D S, Young B C, Chu S. Precision-measurement of h/m(cs) based on photon recoil using laser-cooled atoms and atomic interferometry [J]. Appl. Phys. B, 1994, 59(3):217-256
[10] Kasevish M A, Chu S. Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer [J]. Appl. Phys. B, 1992,54(5):321-332
[11] Arlt J, Birkl G, Rasel E, et al. Atom optics, guided atoms, and atom interferometry [J]. Adv. At. Mol. Opt. Phys, 2005, 50:55-89
[12] Bouyer P, Gustavson T L, et al. Microwave signal generation with optical injection locking [J]. Opt. Lett., 1996, 21 (18):1502-1504
[13] Kasevich M A, Chu S. Atomic interferometry using stimulated Raman transitions [J]. Phys. Rev. Lett., 1991, 67(2):181-184
[14] Stover H L, Steier W H. Locking of laser oscillators by light injection [J]. Appl. Phys. Lett., 1966, 8:91-93
[15] Girard A. The effects of the insertion of a CW, low-pressure CO2 laser into a TEA CO2 laser cavity [J]. Opt. Commun., 1974, 11(4): 346-351
[16] Lachambre J L, Lavigne P, Otis G, Noe M. Injection locking and mode selection in TEA-CO2 laser oscillators [J]. IEEE Electron, 1976, 12(12):756-764
[17] Lang R. Injection locking properties of a semiconductor laser [J]. IEEE J. Quantum Electron, 1982, 18(6):976-983
[18] Wang X, Chen X, et al. Theoretic and experiment study on large frequency different side-mode injection locking of high power semiconductor lasers for laser cooling [J]. Chin. Phys. Soc.(物理学报), 2000, 49(1):86-92(in Chinese)
[19] Chen W, Qi X, et al. Optical phase locking with a large and tunable frequency difference based on a vertical-cavity surface-emitting laser [J]. Opt. Lett., 2008, 33(4):357-359
[20] Chen L, Xiong Z, et al. Tapered amplified diode laser injected by distributed feedback laser [J]. Chin. J. Quantum Electronics(量子电子学报),2010, 27(1):15-20(in Chinese)
[21] Li R, Zhou L, et al. Measurement of the quadratic Zeeman shift of 85Rb hyperfine sublevels using stimulated Raman transitions [J]. Opt. Commun., 2009, 282(7):1340-1344 |