[1] Bozoki Z, Pogany A, Szabo G. Photoacoustic instruments for practical applications: present, potentials, and future challenges [J]. Applied Spectroscopy Reviews, 2011, 46(1): 1-37. [2] Meyer P L, Sigrist M W. Atmospheric pollution monitoring using CO2 – laser photoacoustic spectroscopy and other techniques [J]. Review of Scientific Instruments, 1990, 61(7): 1779-1807. [3] Narasimhan L R, Goodman W, Patel C. Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(8): 4617-4621. [4] 赵俊娟,赵湛,杜利东,等. 球形光声腔中二氧化碳的检测 [J]. 传感技术学报,2012,25(3):289-292. Zhao Junjuan, Zhao Zhan, Du Lidong, et al. Detection of CO2 in the spherical photoacoustic cell [J]. Chinese Journal of Sensors and Actuators (传感技术学报), 2012, 25(3):289-292 (in Chinese) [5] 刘强,王贵师,刘锟,等. 基于光声光谱技术的大气气溶胶吸收系数测量 [J]. 红外与激光工程,2014,43(9):3010-3014. Liu Qiang, Wang Guishi, Liu Kun, et al. Measurements of atmospheric aerosol optical absorption coefficients using photoacoustic spectrometer [J]. Infrared and Laser Engineering (红外与激光工程), 2014,43(9): 3010-3014 (in Chinese). [6] 查申龙,刘锟,谈图,等. 光声光谱技术在多组分气体浓度探测中的应用 [J]. 光子学报,2017,46(6):0612002. Zha Shenlong, Liu Kun, Tan Tu, et al. Application of photoacoustic spectroscopy in multi-component gas concentration detection [J]. Acta Photonica Sinica (光子学报), 2017, 46(6): 0612002 (in Chinese). [7] Liu Kun, Yi Hongming, Kosterev A, et al. Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: optimization and performance evaluation [J]. Review of Scientific Instruments, 2010, 81(10): 103103. [8] 周彧,曹渊,朱公栋,等. 基于7.6μm量子级联激光的光声光谱探测N2O气体 [J]. 物理学报,2018,678(8):084201. Zhou Yu, Cao Yuan, Liu Kun, et al. Detection of nitrous oxide by resonant photoacoustic spectroscopy based on mid infrared quantum cascade laser [J]. Acta Physica Sinica (物理学报), 2018,67(8): 084201 (in Chinese). [9] 查申龙,刘锟,朱公栋,等. 基于共振型高灵敏度光声光谱技术探测痕量乙炔气体浓度 [J]. 光谱学与光谱分析,2017,37(9):2673-2678. Zha Shenlong, Liu Kun, Zhu Gongdong, et al. Acetylene detection based on resonant high sensitive photoacoustic spectroscopy [J]. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2017, 37(9): 2673-2678 (in Chinese). [10] 陈颖,高光珍,蔡廷栋. 基于光声光谱的乙烯探测技术 [J]. 中国激光,2017,44(5):0511001. Chen Ying, Gao Guangzhen, Cai Tingdong. Detection technique of ethylene based on photoacoustic spectroscopy [J]. Chinese Journal of Lasers (中国激光), 2017, 44(5): 0511001 (in Chinese). [11] Laurila T, Cattaneo H, Koskinen V, et al. Diode laser-based photoacoustic spectroscopy with interferometrically-enhanced cantilever detection. Optics Express, 2005, 13(7): 2453 - 2458 [12] Kosterev A A, Bakhirkin Y A, Curl R F, et al. Quartz-enhanced photoacoustic spectroscopy [J]. Optics Letters, 2002, 27(1): 1902-1904. [13] Liu Kun, Mei Jiaoxu, Zhang Weijun, et al. Multi-resonator photoacoustic spectroscopy [J]. Sensors and Actuators B: Chemical, 2017, 251: 632-636. [14] Yi Hongming, Liu Kun, Chen Weidong, et al. Application of broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy [J]. Optics Letters, 2011, 36(4): 481-483. [15] 王贵师,易红明,蔡廷栋,等. 基于石英音叉增强型光谱技术(QEPAS)的实时探测系统研究 [J]. 物理学报,2012,61(12):120701. Wang Guishi, Yi Hongming, Cai Tingdong, et al. Research on the real-time measurement system based on QEPAS [J]. Acta Physica Sinica (物理学报), 2012, 61(12): 120701 (in Chinese). [16] Yi Hongming, Chen Weidong, Vicet A, et al. T-shape microresonator-based quartz-enhanced photoacoustic spectroscopy for ambient methane monitoring using 3.38-μm antimonide-distributed feedback laser diode [J]. Applied Physics B, 2014, 116(2): 423-428. [17] 马欲飞,何应,于欣,等. 基于 石英增强光声光谱的HCl痕量气体高灵敏度探测研究 [J]. 光谱学与光谱分析,2017,37(4):1033-1036. Ma Yufei, He Ying, Yu Xin, et al. Research on high sensitive detection of HCl trace gas based on QEPAS technology [J]. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2017, 37(4): 1033-1036 (in Chinese). [18] 胡立兵,刘锟,王贵师,等. 基于2.33μm可调谐激光的石英音叉增强型光声光谱测量CO研究 [J]. 激光与光电子学进展,2015,52:053002. Hu Libing, Liu Kun, Wang Guishi, et al. Research on detecting CO with quartz enhanced photoacoustic spectroscopy based on 2.33μm distributed feedback laser [J]. Laser and Optoelectronics progress (激光与光电子学进展), 2015, 52: 053002 (in Chinese). [19] Ma Y, Lewicki R, Razeghi M, et al. QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL [J]. Optics. Express, 2013, 21(1): 1008-1019. [20] 谈图,刘锟,王贵师,等. 基于中红外QCL激光和新型多通池高灵敏度测量CO和N2O的研究 [J]. 2015, 35(2):0230005. Tan Tu, Liu Kun, Wang Guishi, et al. Research on high sensitivity measurement of N2O and CO based on MIR-QCL and novel compact multi-pass gas cell [J]. Acta. Optica. Sinica (光学学报), 2015, 35(2): 0230005 (in Chinese). [21] Nagi A, Persijn S T, Lindsay I D, et al. Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing [J]. Applied Physics B, 2007, 89(1): 123-128. [22] Borri S, Patimisco P, Sampaolo A, et al. Terahertz quartz enhanced photo-acoustic sensor [J]. Applied Physics Letters, 2013, 103(2): 021105. [23] Kosterev A A, Dong Lei, Thomazy D, et al. QEPAS for chemical analysis of multi-component gas mixtures [J]. Applied Physics B, 2010, 101: 649–659 [24] Kosterev A A, Tittel F K, Serebryakov D V, et al. Applications of quartz tuning forks in spectroscopic gas sensing [J]. Applied Spectroscopy Reviews, 2005, 76(4): 043105. [25] Liu Kun, Gao Xiaoming, Yi Hongming, et al. Off-beam quartz-enhanced photoacoustic spectroscopy [J]. Optics Letters, 2009, 34(10): 1594-1596. [26] Yi Hongming, Chen Weidong, Sun Shanwen, et al. T-shape microresonator-based high sensitivity quartz-enhanced photoacoustic spectroscopy sensor [J].Optics Express, 2012, 20(8): 9187-9196. [27] 刘小利,武红鹏,邵杰,等. 利用石英增强光声光谱技术在2.0μm处实现高灵敏CO2检测的实验研究 [J]. 光谱学与光谱分析,2015,35(8):2078-2082. Liu Xiaoli, Wu Hongpeng, Shao Jie, et al. High-sensitive carbon dioxide detection using quartz-enhanced photoacoustic spectroscopy with a 2.0 μm distribute feedback laser [J]. Spectroscopy and Spectra Analysis (光谱学与光谱分析), 2015, 35(8): 2078-2082 (in Chinese). |