量子电子学报 ›› 2020, Vol. 37 ›› Issue (4): 447-455.
杨学宗1;2;3∗ , 冯衍1∗
收稿日期:
2020-05-07
修回日期:
2020-05-08
出版日期:
2020-07-28
发布日期:
2020-07-21
作者简介:
杨学宗( 1989 - ), 山东淄博人, 博士, 讲师, 主要从事固体, 光纤拉曼激光器, 非线性频率转换等方面的研究。
E-mail: xzyang@siom.ac.cn
冯衍( 1974 - ), 浙江湖州人, 博士, 研究员, 博士生导师, 主要从事激光技术与非线性光学方面的研究。
E-mail: feng@siom.ac.cn
YANG Xuezong1;2;3∗, FENG Yan1∗
Received:
2020-05-07
Revised:
2020-05-08
Published:
2020-07-28
Online:
2020-07-21
摘要: 基于钠层的589 nm 激光导引星技术, 结合地基光学望远镜自适应光学系统, 可以有效补偿大气扰动造成 的光信号波前畸变, 在天文观测、星地激光通信、空间碎片跟踪等诸多领域有着重要的应用前景。介绍了一种新 型的589 nm 钠导星激光器技术:金刚石拉曼钠导星激光器。金刚石晶体超高的热导率和无空间烧孔效应的增益特 性是提高激光输出功率和实现单纵模运转的关键, 目前已获得22 W 的连续波单频钠导星激光器输出。金刚石拉 曼激光器技术提供了一种实现高功率钠激光输出的高效方案, 并为高功率微秒脉冲、高重频脉冲、频率啁啾等新 型钠导星激光器系统提供了新的思路。
中图分类号:
杨学宗, ∗ , 冯衍∗. 金刚石拉曼钠导星激光器技术研究进展[J]. 量子电子学报, 2020, 37(4): 447-455.
YANG Xuezong, ∗, FENG Yan∗. Diamond Raman Lasers for Sodium Guide Star[J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 447-455.
[1] | Kawahara T D, Nozawa S, Saito N, et al. Sodium temperature/wind lidar based on laser-diode-pumped Nd:YAG lasers deployed |
at Troms, Norway (69.6 N, 19.2 E) [J]. Optics Express, 2017, 25(12): A491-A501. | |
[2] | Fan T, Yang X, Dong J, et al. Remote magnetometry with mesospheric sodium based on gated photon counting [J]. Journal of |
Geophysical Research: Space Physics, 2019, 124(9): 7505-7512. | |
[3] | D’Orgeville C, Bennet F, Blundell M, et al. A sodium laser guide star facility for the ANU/EOS space debris tracking adaptive |
optics demonstrator [C]. Proceedings of SPIE, 2014, 9148. | |
[4] | Mata-Calvo R, Calia D B, Barrios R, et al. Laser guide stars for optical free-space communications [C]. Proceedings of SPIE, |
20 | 17, 10096. |
[5] | Hillman P D, Drummond J D, Denman C A, et al. Simple model, including recoil, for the brightness of sodium guide stars |
created from CW single frequency fasors and comparison to measurements [C]. Proceedings of SPIE, 2008, 7015. | |
[6] | Holzl¨ohnerR, Rochester S M, Bonaccini C D, et al. Optimization of cw sodium laser guide star efficiency [J]. Astronomy & |
Astrophysics, 2010, 510: A20. | |
[7] | Bass I L, Bonanno R E, Hackel R P, et al. High-average-power dye laser at Lawrence Livermore National Laboratory [J]. |
Applied Optics, 1992, 31(33): 6993-7006. | |
[8] | Denman C A, DrummondJ D, Eickhoff M L, et al. Characteristics of sodium guide stars created by the 50-watt FASOR and |
first closed-loop AO results at the Starfire optical range [C]. Proceedings of SPIE, 2006, 6272: 695916. | |
[9] | Lu Y, Zhang L, Xu X, et al. 208 W all-solid-state sodium guide star laser operated at modulated-longitudinal mode [J]. Optics |
Express, 2019, 27(15): 20282-20289. | |
[10] | Jin K, Wei K, Feng L, et al. Photon return on-sky test of pulsed sodium laser guide star with D2b repumping [J]. Publications |
of the Astronomical Society of the Pacific, 2015, 127(954): 749-756. | |
[11] | Taylor L R, Feng Y, Calia D B. 50 W CW visible laser source at 589 nm obtained via frequency doubling of three coherently |
combined narrow-band Raman fibre amplifiers [J]. Optics Express, 2010, 18(8): 8540-8555. | |
[12] | Yang X, Zhang L, Cui S, et al. Sodium guide star laser pulsed at Larmor frequency [J]. Optics Letters, 2017, 42(21): 4351-4354. |
[13] | D’Orgeville C, Fetzer G J. Four generations of sodium guide star lasers for adaptive optics in astronomy and space situational |
awareness [C]. Proceedings of SPIE, 2016, 9909: 99090R. | |
[14] | Mildren R P. Intrinsic Optical Properties of Diamond [M]. Wiley, 2013. |
[15] | Lux O, Sarang S, Kitzler O, et al. Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free |
gain [J]. Optica, 2016, 3(8): 876-881. | |
[16] | Yang X, Kitzler O, Spence D J, et al. Single-frequency 620 nm diamond laser at high power, stabilized via harmonic selfsuppression |
and spatial-hole-burning-free gain [J]. Optics Letters, 2019, 44(4): 839-842. | |
[17] | Friel I, Geoghegan S L, Twitchen D J, et al. Development of high quality single crystal diamond for novel laser applications |
[C] | Proceedings of SPIE, 2010, 7838: 783819. |
[18] | Lawandy N, Afzal R. Solid state diamond Raman laser [P]. U.S. Patent, 20050163169 A1, 2004. |
[19] | Piper J A, Pask H M. Crystalline Raman lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): |
69 | 2-704. |
[20] | Granados E, Spence D J, Mildren R P. Deep ultraviolet diamond Raman laser [J]. Optics Express, 2011, 19(11): 10857-10863. |
[21] | Jasbeer H, Williams R J, Kitzler O, et al. Wavelength diversification of high-power external cavity diamond Raman lasers |
using intracavity harmonic generation [J]. Optics Express, 2018, 26(2): 1930-1941. | |
[22] | Mildren R P, Butler J E, Rabeau J R. CVD-diamond external cavity Raman laser at 573 nm [J]. Optics Express, 2008, 16(23): |
18 | 950-18955. |
[23] | Spence D J, Granados E, Mildren R P. Mode-locked picosecond diamond Raman laser [J]. Optics Letters, 2010, 35(4): 556-558. |
[24] | Sabella A, Piper J A, Mildren R P. 1240 nm diamond Raman laser operating near the quantum limit [J]. Optics Letters, 2010, |
35 | (23): 3874-3876. |
[25] | Sabella A, Piper J A, Mildren R P. Efficient conversion of a 1.064 m Nd: YAG laser to the eye-safe region using a diamond |
Raman laser [J]. Optics Express, 2011, 19(23): 23554-23560. | |
[26] | Jel´ınek Jr M, Kitzler O, Jel´ınkov´a H, et al. CVD-diamond external cavity nanosecond Raman laser operating at 1.63 m |
pumped by 1.34 m Nd: YAP laser [J]. Laser Physics Letters, 2012, 9(1): 35-38. | |
[27] | McKay A, Kitzler O, Liu H, et al. High average power (11 W) eye-safe diamond Raman laser [C]. Proceedings of SPIE, 2012, |
85 | 51: 85510U. |
[28] | Sabella A, Piper J A, Mildren R P. Mid-infrared diamond Raman laser with tuneable output [C]. Proceedings of SPIE, 2014, |
89 | 59: 89590B. |
[29] | Sabella A, Piper J A, Mildren R P. Diamond Raman laser with continuously tunable output from 3.38 to 3.80 m [J]. Optics |
Letters, 2014, 39(13): 4037-4040. | |
[30] | Sabella A. Long Wavelength Extension of Diamond Raman Lasers [D]. Australia: Doctorial Dissertation of Macquarie University, |
2017. | |
[31] | Kaminskii A A, Hemley R J, Lai J, et al. High-order stimulated Raman scattering in CVD single crystal diamond [J]. Laser |
Physics Letters, 2007, 4(5): 350-353. | |
[32] | Warrier A M, Lin J, Pask H M, et al. Highly efficient picosecond diamond Raman laser at 1240 and 1485 nm [J]. Optics |
Express, 2014, 22(3): 3325-3333. | |
[33] | Murtagh M, Lin J, Mildren R P, et al. Efficient diamond Raman laser generating 65 fs pulses [J]. Optics Express, 2015, 23(12): |
15 | 504-15513. |
[34] | Murtagh M, Lin J, Mildren R P, et al. Ti: sapphire-pumped diamond Raman laser with sub-100-fs pulse duration [J]. Optics |
Letters, 2014, 39(10): 2975-2978. | |
[35] | Bai Z, Williams R J, Jasbeer H, et al. Large brightness enhancement for quasi-continuous beams by diamond Raman laser |
conversion [J]. Optics Letters, 2018, 43(3): 563-566. | |
[36] | Williams R J, Nold J, Strecker M, et al. Efficient Raman frequency conversion of high-power fiber lasers in diamond [J]. Laser |
& Photonics Reviews, 2015, 9(4): 405-411. | |
[37] | Williams R J, Kitzler O, Bai Z, et al. High power diamond Raman lasers [J]. IEEE Journal of Selected Topics in Quantum |
Electronics, 2018, 24(5): 1-14. | |
[38] | Heinzig M,Walbaum T,Williams R J, et al. High-power single-pass pumped diamond Raman laser [C]. Conference on Lasers |
and Electro-Optics/Europe-European Quantum Electronics Conference, 2017. | |
[39] | Antipov S, Sabella A, Williams R J, et al. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2 = 15 beam [J]. |
Optics Letters, 2019, 44(10): 2506-2509. | |
[40] | Heinzig M, Palma-Vega G, Walbaum T, et al. High power 1st and 2nd Stokes diamond Raman frequency conversion [C]. |
Advanced Solid State Lasers Conference, 2018. | |
[41] | Kitzler O, Lin J, Pask H M, et al. Single-longitudinal-mode ring diamond Raman laser [J]. Optics Letters, 2017, 42(7): 1229- |
1232. | |
[42] | Yang X, Kitzler O, Spence D J, et al. Diamond sodium guide star laser [J]. Optics Letters, 2020, 45(7): 1898-1901. |
[43] | Mckay A, Spence D J, Coutts D W, et al. Diamond-based concept for combining beams at very high average powers [J]. Laser |
& Photonics Reviews, 2017, 11(3): 1600130. | |
[44] | Reilly S, Savitski V G, Liu H, et al. Monolithic diamond Raman laser [J]. Optics Letters, 2015, 40(6): 930-933. |
[45] | Murray J T, Austin W L, Powell R C. Intracavity Raman conversion and Raman beam cleanup [J]. Optical Materials, 1999, |
11 | : 353-371. |
[46] | Martin K I, Clarkson W A, Hanna D C. Self-suppression of axial mode hopping by intracavity second-harmonic generation |
[J] | Optics Letters, 1997, 22(6): 375-377. |
[47] | Glick Y, Sintov Y, Zuitlin R, et al. Single-mode 230 W output power 1018 nm fiber laser and ASE competition suppression |
[J] | Journal of the Optical Society of America B: Optical Physics, 2016, 33(7): 1392-1398. |
[48] | Jiang M, Zhou P, Xiao H, et al. A high-power narrow-linewidth 1018 nm fiber laser based on a single–mode–fewmode– |
single–mode structure [J]. High Power Laser Science and Engineering, 2015, 3: e25. | |
[49] | Yan P, Wang X, Li D, et al. High-power 1018 nm ytterbium-doped fiber laser with output of 805 W [J]. Optics Letters, 2017, |
42 | (7): 1193-1196. |
[50] | Zhang L, Jiang H, Cui S, et al. Versatile Raman fiber laser for sodium laser guide star [J]. Laser & Photonics Reviews, 2014, |
8( | 6): 889-895. |
[51] | Pedreros B F, Holzl¨ohner R, Rochester S, et al. Frequency chirped continuous-wave sodium laser guide stars: Modeling and |
optimization [J]. Journal of the Optical Society of America B: Optical Physics, 2020, 37(4): 1208-1218. |
[1] | 张艳琳, 游利兵, 王宏伟, 王琪, 胡泽雄, 范军, 方晓东, . 深紫外飞秒激光脉宽测量[J]. 量子电子学报, 2023, 40(4): 469-475. |
[2] | 张震, 段典, 陈雨君, 魏珊珊, 马金栋, 姚波, 毛庆和 . 基于窄带耗散孤子Figure-9 光纤振荡器和单级 单模光纤放大器的皮秒脉冲光纤前端[J]. 量子电子学报, 2023, 40(4): 476-482. |
[3] | 唐敬玲, 齐月, 白振旭, 齐瑶瑶, 丁洁, 颜秉政, 王雨雷, 吕志伟, . 基于YAG/Nd: YAG/Cr4+: YAG 键合晶体 的被动调Q亚纳秒激光器[J]. 量子电子学报, 2023, 40(4): 483-491. |
[4] | 王 长, ∗ , 宋高辉, , 谭智勇, , 曹俊诚, ∗. 基于半导体光子学器件的太赫兹成像技术研究进展 (封面文章}[J]. 量子电子学报, 2023, 40(2): 181-192. |
[5] | 陈雨君 姚波 刘昊炜 魏珊珊 毛庆和. 基于石英玻璃掺铥光纤的单纵模 DBR 光纤激光器的研制[J]. 量子电子学报, 2023, 40(1): 56-61. |
[6] | 魏士钦 王瑶 王梦真 王芳 刘俊杰 刘玉怀. 基于阱式阶梯电子阻挡层的深紫外激光二极管性能研究[J]. 量子电子学报, 2023, 40(1): 62-68. |
[7] | 胡泽雄, 游利兵, ∗, 寸 超, 王宏伟, 范 军, 王 琪, 张艳琳, 方晓东. 准分子激光低抖动延时同步系统[J]. 量子电子学报, 2023, 40(1): 69-78. |
[8] | 钟玉龙, 程庭清∗. LD 侧面泵浦 Tm:YAG 电光调 Q 激光的实验研究[J]. 量子电子学报, 2022, 39(5): 736-741. |
[9] | 张 超, 韩亚帅, 周正仙, 屈 军∗. 扭曲厄米-高斯-谢尔模光束对两种 瑞利粒子的捕获[J]. 量子电子学报, 2022, 39(5): 742-751. |
[10] | 张艳琳, 游利兵, ∗, 王宏伟, 王 琪, 胡泽雄, 范 军, 方晓东, . 紫外超短脉冲的准分子激光放大技术[J]. 量子电子学报, 2022, 39(5): 677-686. |
[11] | 张 瑞, 梅大江, ∗, 石小兔, 马荣国, 张庆礼, ∗, 窦仁勤, 刘文鹏, . YAG 晶体的位错研究进展[J]. 量子电子学报, 2022, 39(5): 687-706. |
[12] | 杨浩, 滕浩, ∗, 吕仁冲, 朱江峰∗, 魏志义, . 基于同心展宽器的飞秒啁啾脉冲放大研究[J]. 量子电子学报, 2022, 39(4): 566-573. |
[13] | 康仁铸, 吕仁冲, 滕浩, 朱江峰, 魏志义, . 基于改进的Frantz-Nodvik 方程的 Yb: KGW 再生放大器研究[J]. 量子电子学报, 2022, 39(4): 574-582. |
[14] | 张傲翔, 王瑶, 王梦真, 魏士钦, 王芳, 刘玉怀, . 具有M 形空穴阻挡层结构的AlGaN 基 深紫外激光二极管性能优化[J]. 量子电子学报, 2022, 39(4): 583-590. |
[15] | 李晨睿, 李香乐, 应佳峻, 吴怡童, 盛雨齐, 周勇, 高伟清. 无拍频1570 nm 光纤激光器及其在 2 m 波段激光产生中的应用[J]. 量子电子学报, 2022, 39(4): 591-597. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||