量子电子学报 ›› 2020, Vol. 37 ›› Issue (5): 513-523.
• “激光大气传输与探测”专辑 • 下一篇
滕浩1, 鲁欣1, 沈忠伟1, 陈式友1,
陈荣毅2, 魏文寿2, 魏志义1
收稿日期:
2020-06-08
修回日期:
2020-07-07
出版日期:
2020-09-28
发布日期:
2020-09-28
通讯作者:
魏志义:zywei@iphy.ac.cn
作者简介:
滕浩( 1972 - ), 四川人, 研究生, 副研究员, 主要从事超短脉冲激光及超快物理方面的研究。E-mail: hteng@iphy.ac.cn
基金资助:
TENG Hao1, LU Xin1, SHEN Zhongwei1, CHEN Shiyou1, CHEN Rongyi2, WEI Wenshou2, WEI Zhiyi1
Received:
2020-06-08
Revised:
2020-07-07
Published:
2020-09-28
Online:
2020-09-28
摘要: 对太瓦(TW) 飞秒激光在自然大气中传输时产生的超长等离子体通道的物理性质进行了研究。试验结果 证实2 TW 飞秒激光在大气中自由传输时实现了2 km 长的等离子体通道, 长距离传输后通道内的等离子体电子 密度约为1011 cm3, 仍然保持良好的导电性。高压放电试验也证实了有等离子体通道存在, 可以将放电电压降低 30%, 说明激光诱导高压放电的有效性。本次试验研究表明长度为公里量级、长寿命大气等离子体通道的实现是 可行的, 将为激光引雷、大气监测、人工干预气候等实用化应用扫清技术上的障碍。
中图分类号:
滕浩, 鲁欣, 沈忠伟, 陈式友, 陈荣毅, 魏文寿, 魏志义. 野外环境下太瓦飞秒激光等离子体通道 特性研究[J]. 量子电子学报, 2020, 37(5): 513-523.
TENG Hao, LU Xin, SHEN Zhongwei, CHEN Shiyou, CHEN Rongyi, WEI Wenshou, WEI Zhiyi. Properties of long plasma-channel generated by TW femtosecond laser in natural environmental air[J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 513-523.
[1] | Hao Zuoqiang, Zhang Jie. Propagation of intense femtosecond laser pulses in air [J]. Physics (物理), 2004, 33(10): 741-747 (in |
Chinese). | |
[2] | Braun A, Korn G, Liu X, et al. Self-channeling of high-peak-power femtosecond laser-pulses in air [J]. Optics Letters, 1995, |
20 | (1): 73-75. |
[3] | Chin S L, Hosseini S A, Liu W, et al. The propagation of powerful femtosecond laser pulses in optical media: Physics, |
application, and new challenges [J]. Canadian Journal of Physics, 2005, 83(9): 863-905. | |
[4] | Berge L, Skupin S, Nuter R, et al. Ultrashort filaments of light in weakly ionized, optically transparent media [J]. Reports on |
Progressin Physics, 2007, 70(10): 1633-1713. | |
[5] | Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media [J]. Physics Reports, 2007, 441(2): 47-189. |
[6] | B´ejot P, Kasparian J, Henin S, et al. Higher-order Kerr terms allow ionization-free filamentation in gases [J]. Physical Review |
Letters, 2010, 104(10): 103903. | |
[7] | Nibbering E T J, Curley P F, Grillon G, et al. Conical emission from self-guided femtosecond pulses in air [J]. Optics Letters, |
19 | 96, 21(1): 62-64. |
[8] | Alfano R R. The Supercontinuum Laser Source [M]. New York: Springer, 2016: 281-298. |
[9] | BallL M. The laser lightning rod system: Thunderstorm domestication [J]. Applied Optics, 1974, 13(10): 2292-2296. |
[10] | Zhao X M, Diels J C, Wang C Y, et al. Femtosecond ultraviolet-laser pulse induced lightning discharges in gases [J]. IEEE |
Journal of Quantum Electronics, 1995, 31(3): 599-612. | |
[11] | Rodriguez M, Sauerbrey R,Wille H, et al. Triggering and guiding megavolt discharges by use of laser-induced ionized filaments |
[J] | Optics Letters, 2002, 27(9): 772-774. |
[12] | Kasparian J, Ackermann R, Andr´e Y B, et al. Electric events synchronized with laser filaments in thunderclouds [J]. Optics |
Express, 2008, 169(8): 5757-5763. | |
[13] | Chateauneuf M, Payeur S, Dubois J, et al. Microwave guiding in air by a cylindrical filament array waveguide [J]. Applied |
Physics Letters, 2008, 92(9): 091104. | |
[14] | Bogatov N A, Kuznetsov A I, Smirnov A I, et al. Channeling of microwave radiation in a double line containing a plasma |
channel produced by intense femtosecond laser pulses in air [J]. Quantum Electronics, 2009, 39(10): 985-988. | |
[15] | Daigle J F, Kamali Y, Roy G, et al. Remote filament-induced fluorescence spectroscopy from thin clouds of smoke [J]. Applied |
Physics B, 2008, 93(11): 759-762. | |
[16] | M`ejean G, Kasparian J, Yu J, et al. Remote detection and identification of biological aerosols using a femtosecond terawatt |
lidar system [J]. Applied Physics B, 2004, 78(5): 535-537. | |
[17] | Rohwetter P, Kasparian J, Stelmaszczyk K, et al. Laser-induced water condensation in air [J]. Nature Photonics, 2010, 4(7): |
45 | 1-456. |
[18] | Ju J J, Liu J S, Wang C, et al. Laser-filamentation-induced condensation and snow formation in a cloud chamber [J]. Optics |
Letters, 2012, 37(7): 1214-1216. | |
[19] | Rosenthal E W, Jhajj N, Wahlstand J K, et al. Collection of remote optical signals by air waveguides [J]. Optica, 2014, 1(1): |
5-9. | |
[20] | Kasparian J, Rodriguez M, M`ejean G, et al. White-light filaments for atmospheric analysis [J]. Science, 2003, 301(5629): |
61 | -64. |
[21] | Berg´e L, Skupin S, Lederer F, et al. Multiple filamentation of terawatt laser pulses in air [J]. Physical Review Letters, 2004, |
92 | (22): 225002. |
[22] | Rodriguez M, Bourayou R, Mejean G, et al. Kilometer-range nonlinear propagation of femtosecond laser pulses [J]. Physical |
Review E, 2004, 69(3 Pt 2): 036607. | |
[23] | Mechain G, Couairon A, Andre Y B, et al. Long-range self-channeling of infrared laser pulses in air: A new propagation |
regime without ionization [J]. Applied Physics B, 2004, 79(3): 379-382. | |
[24] | Mechain G, D’Amico C, Andre Y B, et al. Range of plasma filaments created in air by a multi-terawatt femtosecond laser [J]. |
Optics Communications, 2005, 247(1): 171-180. | |
[25] | Hao Z Q, Zhang J, Zhang Z, et al. Characteristics of multiple filaments generated by femtosecond laser pulses in air: Prefocused |
versus free propagation [J]. Physical Review E, 2006, 74(6 Pt 2): 066402. | |
[26] | Durand M, Houard A, Prade B, et al. Kilometer range filamentation [J]. Optics Express, 2013, 21(22): 26836-26845. |
[27] | Apeksimov D V, Geints Y E, Zemlyanov A A, et al. Control of the domain of multiple filamentation of terawatt laser pulses |
along a hundred-meter air path [J]. Quantum Electronics, 2015, 45(5): 408-414. | |
[28] | Moulton P F. Spectroscopic and laser characteristics of Ti: Al2O3 [J]. Journal of the Optical Society of America B, 1986, 3(1): |
12 | 5-133. |
[29] | Strickland D, Mourou G. Compression of amplified chirped optical pulses [J]. Optics Communications, 1985, 55(3): 219-221. |
[30] | Kosareva O G, Kandidov V P, Brodeur A, et al. Conical emission from laser-plasma interactions in the filamentation of |
powerful ultrashort laser pulses in air [J]. Optics Letters, 1997, 22(17): 1332-1334. | |
[31] | Kandidov V P, Kosareva O G, Tamarov M P, et al. Nucleation and random movement of filaments in the propagation of |
high-power laser radiation in a turbulent atmosphere [J]. Quantum Electronics, 1999, 29(10): 911-915. [32] Chin S L, Talebpour A, Yang J, et al. Filamentation of femtosecond laser pulses in turbulent air [J]. Applied Physics B-Lasers | |
and Optics, 2002, 74(1): 67-76. | |
[33] | Ma Y Y, Lu X, Xi T T, et al. Widening of long-range femtosecond laser filaments in turbulent air [J]. Optics Express, 2008, |
16 | (12): 8332-8341. |
[34] | Tzortzakis S, Prade B, Franco M, et al. Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser |
pulse in air [J]. Optics Communications, 2000, 181(1): 123-127. | |
[35] | Hao Z Q, Zhang J, Li Y T, et al. Prolongation of the fluorescence lifetime of plasma channels in air induced by femtosecond |
laser pulses [J]. Applied Physics B, 2005, 80(4): 627-630. | |
[36] | Liu X L, Lu X, Ma J L, et al. Long lifetime air plasma channel generated by femtosecond laser pulse sequence [J]. Optics |
Express, 2012, 20(6): 5968-5973. | |
[37] | Tzortzakis S, Franco M A, Andre Y B, et al. Formation of a conducting channel in air by self-guided femtosecond laser pulses |
[J] | Physical Review E, 1999, 60(4 Pt A): R3505-R3507. |
[38] | Schillinger H, Sauerbrey R. Electrical conductivity of long plasma channels in air generated by self-guided femtosecond laser |
pulses [J]. Applied Physics B, 1999, 68(4): 753-756. | |
[39] | Lu X, Chen S Y, Ma J L, et al. Quasi-steady-state air plasma channel produced by a femtosecond laser pulse sequence [J]. |
Scientific Reports, 2015, 5: 15515. | |
[40] | Clerici M, Hu Y, Lassonde P, et al. Laser-assisted guiding of electric discharges around objects [J]. Science Advances, 2015, |
1( | 5): e1400111. |
[1] | 张艳琳, 游利兵, 王宏伟, 王琪, 胡泽雄, 范军, 方晓东, . 深紫外飞秒激光脉宽测量[J]. 量子电子学报, 2023, 40(4): 469-475. |
[2] | 张震, 段典, 陈雨君, 魏珊珊, 马金栋, 姚波, 毛庆和 . 基于窄带耗散孤子Figure-9 光纤振荡器和单级 单模光纤放大器的皮秒脉冲光纤前端[J]. 量子电子学报, 2023, 40(4): 476-482. |
[3] | 唐敬玲, 齐月, 白振旭, 齐瑶瑶, 丁洁, 颜秉政, 王雨雷, 吕志伟, . 基于YAG/Nd: YAG/Cr4+: YAG 键合晶体 的被动调Q亚纳秒激光器[J]. 量子电子学报, 2023, 40(4): 483-491. |
[4] | 王 长, ∗ , 宋高辉, , 谭智勇, , 曹俊诚, ∗. 基于半导体光子学器件的太赫兹成像技术研究进展 (封面文章}[J]. 量子电子学报, 2023, 40(2): 181-192. |
[5] | 陈雨君 姚波 刘昊炜 魏珊珊 毛庆和. 基于石英玻璃掺铥光纤的单纵模 DBR 光纤激光器的研制[J]. 量子电子学报, 2023, 40(1): 56-61. |
[6] | 魏士钦 王瑶 王梦真 王芳 刘俊杰 刘玉怀. 基于阱式阶梯电子阻挡层的深紫外激光二极管性能研究[J]. 量子电子学报, 2023, 40(1): 62-68. |
[7] | 胡泽雄, 游利兵, ∗, 寸 超, 王宏伟, 范 军, 王 琪, 张艳琳, 方晓东. 准分子激光低抖动延时同步系统[J]. 量子电子学报, 2023, 40(1): 69-78. |
[8] | 钟玉龙, 程庭清∗. LD 侧面泵浦 Tm:YAG 电光调 Q 激光的实验研究[J]. 量子电子学报, 2022, 39(5): 736-741. |
[9] | 张 超, 韩亚帅, 周正仙, 屈 军∗. 扭曲厄米-高斯-谢尔模光束对两种 瑞利粒子的捕获[J]. 量子电子学报, 2022, 39(5): 742-751. |
[10] | 张艳琳, 游利兵, ∗, 王宏伟, 王 琪, 胡泽雄, 范 军, 方晓东, . 紫外超短脉冲的准分子激光放大技术[J]. 量子电子学报, 2022, 39(5): 677-686. |
[11] | 张 瑞, 梅大江, ∗, 石小兔, 马荣国, 张庆礼, ∗, 窦仁勤, 刘文鹏, . YAG 晶体的位错研究进展[J]. 量子电子学报, 2022, 39(5): 687-706. |
[12] | 杨浩, 滕浩, ∗, 吕仁冲, 朱江峰∗, 魏志义, . 基于同心展宽器的飞秒啁啾脉冲放大研究[J]. 量子电子学报, 2022, 39(4): 566-573. |
[13] | 康仁铸, 吕仁冲, 滕浩, 朱江峰, 魏志义, . 基于改进的Frantz-Nodvik 方程的 Yb: KGW 再生放大器研究[J]. 量子电子学报, 2022, 39(4): 574-582. |
[14] | 张傲翔, 王瑶, 王梦真, 魏士钦, 王芳, 刘玉怀, . 具有M 形空穴阻挡层结构的AlGaN 基 深紫外激光二极管性能优化[J]. 量子电子学报, 2022, 39(4): 583-590. |
[15] | 李晨睿, 李香乐, 应佳峻, 吴怡童, 盛雨齐, 周勇, 高伟清. 无拍频1570 nm 光纤激光器及其在 2 m 波段激光产生中的应用[J]. 量子电子学报, 2022, 39(4): 591-597. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||