量子电子学报 ›› 2020, Vol. 37 ›› Issue (5): 534-546.
王玉双, 陈子阳∗, 刘永欣, 蒲继雄∗
收稿日期:
2020-07-16
修回日期:
2020-08-06
出版日期:
2020-09-28
发布日期:
2020-09-28
通讯作者:
E-mail: ziyang@hqu.edu.cn; jixiong@hqu.edu.cn
E-mail:2873921311@qq.com
作者简介:
王玉双( 1996 - ), 女, 辽宁人, 研究生, 主要从事光传输与变换方面的研究。E-mail: 2873921311@qq.com
基金资助:
WANG Yushuang, CHEN Ziyang∗, LIU Yongxin, PU Jixiong∗
Received:
2020-07-16
Revised:
2020-08-06
Published:
2020-09-28
Online:
2020-09-28
摘要: 介绍了激光光束经过湍流大气以及散射介质的传输特性。当激光在湍流大气中传输时, 湍流大气的扰 动会影响光束的传输特性。此时, 激光光束仍然保持光束的特性, 因此可以应用扩展的Huygens-Fresnel 衍射积 分研究激光在湍流大气中的传输特性。研究表明, 当光束在湍流大气中传输时, 光束的光斑大小、偏振态、空 间相干度、闪烁因子等参数发生了变化。这些参数的变化除了与大气湍流性质有关外, 还与光束的特性有关。 因此选择合适的入射光束可以减低湍流大气对光束传输的影响。当相干激光经过散射介质后, 会呈现散斑。通 过调控入射激光的波前, 可以使得激光经过散射介质后聚焦。介绍了实现激光经过散射介质聚焦的技术, 包括 基于迭代反馈的波前整形技术、传输矩阵, 以及数字相位共轭技术等。最后, 展望这些技术应用于激光在实际 大气中的传输, 实现激光穿云透雾的目标。
中图分类号:
王玉双, 陈子阳∗, 刘永欣, 蒲继雄∗. 激光经过湍流大气以及散射介质的传输[J]. 量子电子学报, 2020, 37(5): 534-546.
WANG Yushuang, CHEN Ziyang∗, LIU Yongxin, PU Jixiong∗. Propagation of laser through turbulent atmosphere and scattering medium[J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 534-546.
[1] | Vetter C, Eichelkraut T, Ornigotti M, et al. Generalized radially self-accelerating Helicon beams [J]. Physical Review Letters, |
20 | 14, 113(18): 183901. |
[2] | Jia P, Yang Y, Min C J, et al. Sidelobe-modulated optical vortices for free-space communication [J]. Optics Letters, 2013, |
38 | (4): 588-590. |
[3] | Chen Y H, Gu J X, Wang F, et al. Self-spitting properties of Hermite-Gaussian correlated Schell-model beam [J]. Physical |
Review A, 2015, 91(1): 013823. | |
[4] | Cui S W, Chen Z Y, Zhang L, et al. Experimental generation of nonuniformly correlated partially coherent light beams [J]. |
Optics Letters, 2013, 38(22): 4821-4825. | |
[5] | Zhan Q. Cylindrical vector beams: From mathematical concepts to applications [J]. Advances in Optics and Photonics, 2009, |
1( | 1): 1-57. |
[6] | Chen Z Y, Hua L M, Pu J X. Tight focusing of light beams effect of polarization, phase, and coherence [J]. Progress in Optics, |
20 | 12, 57(1): 219-260. |
[7] | Hayakawa C K, Venugopalan V, et al. Amplitude and phase of tightly focused laser beams in turbid media [J]. Physical Review |
Letters, 2009, 103(4): 043903. | |
[8] | Wang F, Cai Y J, Eyyuboglu H T, et al. Twist phase-induced reduction in scintillation of a partially coherent beam in turbulent |
atmosphere [J]. Optics Letters, 2012, 37(2): 184-186. | |
[9] | Chen Z Y, Cui S W, Zhang L, et al. Measuring the intensity fluctuation of partially coherent radially polarized beams in |
atmospheric turbulence [J]. Optics Express, 2014, 22(15): 18278. | |
[10] | Liu X H, Pu J X. Investigation on the scintillation of elliptical vortex beams propagating in turbulent atmosphere [J]. Optics |
Express, 2011, 19(27): 26444. | |
[11] | Li C H, Xian H, Rao C H, et al. Field-of-view shifted Shack-Hartmann wavefront sensor for daytime adaptive optics system |
[J] | Optics Letters, 2006, 31(19): 2821-2823. |
[12] | Tyson R K. Principles of Adaptive Optics [M]. Academic, CRC Press, 1998. |
[13] | Zhang L, Xu Z Y, Pu T, et al. Change in the state of polarization of Gaussian Schell-model beam propagating through non- |
Kolmogorov turbulence [J]. Results in Physics, 2017, 7: 4332-4336. | |
[14] | Ji X L, Baykal Y, Jia X H. Changes of the centroid position of laser beams propagating through an optical system in turbulent |
atmosphere [J]. Optics & Laser Technology, 2013, 54(30): 199-207. | |
[15] | Salem M, Korotkova O, Dogariu A, et al. Polarization changes in partially coherent electromagnetic beams propagating |
through turbulent atmosphere [J]. Waves in Random Media, 2004, 14(4): 513-523. | |
[16] | Korotkova O, Pu J X,Wolf E. Spectral changes in electromagnetic stochastic beams propagating through turbulent atmosphere |
[J] | Journal of Modern Optics, 2008, 55(8): 1199-1208. |
[17] | Korotkova O. Polarization changes in light beams trespassing anisotropic turbulence [J]. Optics Letters, 2015, 40(13): 3077- |
3080. | |
[18] | Zhu Y, Zhao D. Propagation of a stochastic electromagnetic Gaussian Schell-model beam through an optical system in turbulent |
atmosphere [J]. Applied Physics B, 2009, 96(1): 155-160. | |
[19] | Vellekoop I M, Lagendijk A, Mosk A P. Exploiting disorder for perfect focusing [J]. Nature Photonics, 2010, 4(5): 320-322. |
[20] | Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media [J]. Optics Letters, 2007, 32(16): |
23 | 09-2311. |
[21] | Park C, Park J H, Rodriguez C, et al. Full-field subwavelength imaging using a scattering superlens [J]. Physical Review |
Letters, 2014, 113(11): 113901. | |
[22] | Choi Y, Yang T D, Fang-Yen C, et al. Overcoming the diffraction limit using multiple light scattering in a highly disordered |
medium [J]. Physical Review Letters, 2011, 107(2): 023902. | |
[23] | Popoff S M, Lerosey G, Carminati R, et al. Measuring the transmission matrix in optics: An approach to study and control of |
light propagation in disordered media [J]. Physical Review Letters, 2010, 104(10): 100601. | |
[24] | Pu J X, Korotkova O. Propagation of the degree of cross-polarization of a stochastic electromagnetic beam through the turbulent |
atmosphere [J]. Optics Communications, 2009, 282(9): 1691-1698. | |
[25] | Andrews L C, Phillips R L. Laser Beam Propagation Through Random Media [M]. SPIE Press, 1998. |
[26] | Eyyubo¨glu H T. Estimation of aperture averaged scintillations in weak turbulence regime for annular, sinusoidal and hyperbolic |
Gaussian beams using random phase screen [J]. Optics & Laser Technology, 2013, 52: 96-102. | |
[27] | Chen B S, Chen Z Y, Pu J X. Propagation of partially coherent Bessel-Gaussian beams in turbulent atmosphere [J]. Optics & |
Laser Technology, 2008, 40(6): 820-827. | |
[28] | Hubin N, Noethe L. Active Optics, Adaptive optics, and laser guide stars [J]. Science, 1993, 262(5138): 1390-1394. |
[29] | Rotter S, Gigan S. Light fields in complex media: Mesoscopic scattering meets wave control [J]. Reviews of Modern Physics, |
20 | 17, 89(1): 015005. |
[30] | Ishimaru A. Wave Propagation and Scattering in Random Media [M]. John Wiley & Sons, 1999. |
[31] | Rossum M C W, Nieuwenhuizen T M. Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion [J]. |
Reviews of Modern Physics, 1999, 71(1): 313-371. | |
[32] | Popoff S M, Goetschy A, Liew S F, et al. Coherent control of total transmission of light through disordered media [J]. Physical |
Review Letters, 2014, 112(13): 133903. | |
[33] | Fan W R, Chen Z Y, Chen L, et al. Polarization transmission matrix for completely polarization control of focal spots in |
speckle field of multimode fiber [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(4): 4400405. | |
[34] | Chen Z Y, Hu X S, Ji X X, et al. Needle beam generated by a laser beam passing through a scattering medium [J]. IEEE |
Photonics Journal, 2018, 10(5): 6501108. | |
[35] | Vellekoop I M, Mosk A P. Phase control algorithms for focusing light through turbid media [J]. Optics Communications, 2008, |
28 | 1(11): 3071-3080. |
[36] | Andreoli D, Volpe G, Popoff S, et al. Deterministic control of broadband light through a multiply scattering medium via the |
multispectral transmission matrix [J]. Scientific Reports, 2015, 5(1): 10347. | |
[37] | Jang M, Ruan H, Vellekoop I M, et al. Relation between speckle decorrelation and optical phase conjugation (OPC)-based |
turbidity suppression through dynamic scattering media: A study on in vivo mouse skin [J]. Biomedical Optics Express, 2015, | |
6( | 1): 72-85. |
[38] | Cui M, Yang C H. Implementation of a digital optical phase conjugation system and its application to study the robustness of |
turbidity suppression by phase conjugation [J]. Optics Express, 2010, 18(4): 3444-3455. | |
[39] | Katz O, Heidmann P, Fink M, et al. Non-invasive single-shot imaging through scatting layers and around corners via speckle |
correlations [J]. Nature Photonics, 2014, 8(10): 784-790. | |
[40] | Bertolotti J, VanPutten E G, Bium C, et al. Non-invasive imaging through opaque scatting layers [J]. Nature, 2012, 491(7423): |
23 | 2-234. |
[41] | Chen L, Singh R K, Chen Z Y, et al. Phase shifting digital holography with the Hanbury Brown-Twiss approach [J]. Optics |
Express, 2020, 45(1): 212. |
[1] | 张艳琳, 游利兵, 王宏伟, 王琪, 胡泽雄, 范军, 方晓东, . 深紫外飞秒激光脉宽测量[J]. 量子电子学报, 2023, 40(4): 469-475. |
[2] | 张震, 段典, 陈雨君, 魏珊珊, 马金栋, 姚波, 毛庆和 . 基于窄带耗散孤子Figure-9 光纤振荡器和单级 单模光纤放大器的皮秒脉冲光纤前端[J]. 量子电子学报, 2023, 40(4): 476-482. |
[3] | 唐敬玲, 齐月, 白振旭, 齐瑶瑶, 丁洁, 颜秉政, 王雨雷, 吕志伟, . 基于YAG/Nd: YAG/Cr4+: YAG 键合晶体 的被动调Q亚纳秒激光器[J]. 量子电子学报, 2023, 40(4): 483-491. |
[4] | 王 长, ∗ , 宋高辉, , 谭智勇, , 曹俊诚, ∗. 基于半导体光子学器件的太赫兹成像技术研究进展 (封面文章}[J]. 量子电子学报, 2023, 40(2): 181-192. |
[5] | 董秦鲁, 韩一平∗ , 张启凡. 太赫兹波在高超声速目标等离子体 鞘套中的传输特性[J]. 量子电子学报, 2023, 40(2): 258-266. |
[6] | 陈雨君 姚波 刘昊炜 魏珊珊 毛庆和. 基于石英玻璃掺铥光纤的单纵模 DBR 光纤激光器的研制[J]. 量子电子学报, 2023, 40(1): 56-61. |
[7] | 魏士钦 王瑶 王梦真 王芳 刘俊杰 刘玉怀. 基于阱式阶梯电子阻挡层的深紫外激光二极管性能研究[J]. 量子电子学报, 2023, 40(1): 62-68. |
[8] | 胡泽雄, 游利兵, ∗, 寸 超, 王宏伟, 范 军, 王 琪, 张艳琳, 方晓东. 准分子激光低抖动延时同步系统[J]. 量子电子学报, 2023, 40(1): 69-78. |
[9] | 林 冰 , 樊学强 , 李德奎 , 彭志勇 , 郭忠义∗. 基于深度学习的散射光场成像研究进展[J]. 量子电子学报, 2022, 39(6): 880-898. |
[10] | 周贤韬, 江英华∗, 郭晨飞, 赵 宁, 刘 彪. 基于 GHZ 态粒子和单光子混合的 量子安全直接通信协议[J]. 量子电子学报, 2022, 39(5): 768-775. |
[11] | 钟玉龙, 程庭清∗. LD 侧面泵浦 Tm:YAG 电光调 Q 激光的实验研究[J]. 量子电子学报, 2022, 39(5): 736-741. |
[12] | 张 超, 韩亚帅, 周正仙, 屈 军∗. 扭曲厄米-高斯-谢尔模光束对两种 瑞利粒子的捕获[J]. 量子电子学报, 2022, 39(5): 742-751. |
[13] | 张艳琳, 游利兵, ∗, 王宏伟, 王 琪, 胡泽雄, 范 军, 方晓东, . 紫外超短脉冲的准分子激光放大技术[J]. 量子电子学报, 2022, 39(5): 677-686. |
[14] | 张 瑞, 梅大江, ∗, 石小兔, 马荣国, 张庆礼, ∗, 窦仁勤, 刘文鹏, . YAG 晶体的位错研究进展[J]. 量子电子学报, 2022, 39(5): 687-706. |
[15] | 杨浩, 滕浩, ∗, 吕仁冲, 朱江峰∗, 魏志义, . 基于同心展宽器的飞秒啁啾脉冲放大研究[J]. 量子电子学报, 2022, 39(4): 566-573. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||