量子电子学报 ›› 2021, Vol. 38 ›› Issue (2): 228-241.
王燕1,2, 李雯1,3, 薛冬峰4,5∗
收稿日期:
2020-11-27
修回日期:
2020-12-31
出版日期:
2021-03-28
发布日期:
2021-03-29
通讯作者:
E-mail: dongfeng.xue@sdu.edu.cn
E-mail:dongfeng.xue@sdu.edu.cn
作者简介:
王燕( 1975 - ), 女, 湖北郧县人, 博士, 研究员, 博士生导师, 主要从事人工晶体方面的研究。E-mail: wy@fjirsm.ac.cn
基金资助:
WANG Yan1,2, LI Wen1,3, XUE Dongfeng4,5∗
Received:
2020-11-27
Revised:
2020-12-31
Published:
2021-03-28
Online:
2021-03-29
摘要: 稀土光学晶体是一类重要的高端光学材料, 是指稀土元素可以完整占据结晶学结构中某一格点的光学 晶体, 在军事国防、国民经济和科学技术领域等方面具有重要的应用。稀土光学晶体的研究以稀土离子特性和 相图分析为基础, 结合结晶生长的化学键合理论, 确定材料组分、晶体生长方法和工艺参数等, 获得大尺寸单晶 体。对稀土离子发光原理、典型稀土光学晶体的组成设计以及若干稀土光学晶体类型的发展情况进行简介, 并 综述了近几年面向不同应用领域的稀土光学晶体材料的研究新进展。稀土光学晶体材料的研发是实现稀土资 源高质量发展的重要途径, 需要多学科交叉领域的协同发展。
中图分类号:
王燕, 李雯, 薛冬峰, ∗. 稀土光学晶体研究新进展[J]. 量子电子学报, 2021, 38(2): 228-241.
WANG Yan, LI Wen, XUE Dongfeng, ∗. The latest research progress of rare earth optical crystals[J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 228-241.
[1] | National Standardization Technical Committee. Quantities and units: GB/T 39131-2020 [S]. Beijing: China Standard Press, |
2020. | |
[2] | Wang Y, Sun C T, Zhang W, et al. Rare earth crystal materials and their applications [J]. Journal of Technology, 2019, 19(1): |
1-13. | |
王燕, 孙丛婷, 张伟, 等. 稀土晶体材料与应用[J]. 应用技术学报, 2019, 19(1): 1-13. | |
[3] | Xu L L, Sun C T, Xue D F. Recent advances in rare earth crystals [J]. Journal of the Chinese Society of Rare Earths, 2018, |
36 | (1): 1-17. |
徐兰兰, 孙丛婷, 薛冬峰. 稀土晶体研究进展[J]. 中国稀土学报, 2018, 36(1): 1-17. | |
[4] | Sun C T, Xue D F. Study on the crystallization process of function inorganic crystal materials [J]. Scientia Sinica Technologica, |
20 | 14, 44(11): 1123-1136. |
孙丛婷, 薛冬峰. 无机功能晶体材料的结晶过程研究[J]. 中国科学: 技术科学, 2014, 44(11): 1123-1136. | |
[5] | Chen K F, Hu J L, Zhang Y B, et al. Current R&D status and future trends of rare earth crystal materials [J]. Inorganic |
Chemicals Industry, 2020, 52(3): 11-16. | |
陈昆峰, 胡家乐, 张一波, 等. 稀土晶体材料研发现状与未来展望[J]. 无机盐工业, 2020, 52(3): 11-16. | |
[6] | Hu J L, Xue D F. Research progress on the characteristics of rare earth ions and rare earth functional materials [J]. Chinese |
Journal of Applied Chemistry, 2020, 37(3): 245-255. | |
胡家乐, 薛冬峰. 稀土离子特性与稀土功能材料研究进展[J]. 应用化学, 2020, 37(3): 245-255. | |
[7] | Sun C T, Li K Y, Xue D F. Searching for novel materials via 4 f chemistry [J]. Journal of Rare Earths, 2019, 37(1): 1-10. |
[8] | Xue D F, Sun C T, Chen X Y. Hybridized valence electrons of 4 f 0−145d0−16s2: The chemical bonding nature of rare earth |
elements [J]. Journal of Rare Earths, 2017, 35(9): 837-843. | |
[9] | Li K Y, Xue D F. Estimation of electronegativity values of elements in different valence states [J]. Journal of Physical Chemistry |
A, 2006, 110(39): 11332-11337. | |
[10] | Li Z, Yuan Y J. Mode-locked Nd:YAG laser pumped by LD [J] . Chinese Journal of Quantum Electronics, 2011, 28(3): 298- |
302. | |
黎章, 袁易君. LD 抽运锁模Nd:YAG 激光器研究[J]. 量子电子学报, 2011, 28(3): 298-302. | |
[11] | Gao J Y, Zhang Q L, Hu L S, et al. Energy levels and crystal-field calculation for Nd3+ in Gd3Ga5O12 single crystal [J]. Chinese |
Journal of Quantum Electronics, 2011, 28(2): 218-229. | |
[12] | Li J H, Wang S H, Nie Y, et al. Optical absorption properties for Nd:YVO4 laser crystals near 808 nm wavelength [J]. Chinese |
Journal of Quantum Electronics, 2014, 31(2): 154-159. | |
[13] | Yang X D, Chen X B, Chen L, et al. Progress in near-infrared quantum cutting of Tb3+-Yb3+ ion pair [J]. Chinese Journal of |
Quantum Electronics, 2014, 31(4): 466-471. | |
杨晓冬, 陈晓波, 陈栾, 等. Tb3+-Yb3+ 离子对的近红外量子剪裁研究进展[J]. 量子电子学报, 2014, 31(4): 466-471. | |
[14] | Ning K J, Zhang Q L, Sun D L, et al. Preparation, structure and spectral properties for Yb3+:GdGaGe2O7 [J]. Chinese Journal |
of Quantum Electronics, 2011, 28(2): 234-240. | |
宁凯杰, 张庆礼, 孙敦陆, 等. Yb3+:GdGaGe2O7 制备、结构及光谱性能[J]. 量子电子学报, 2011, 28(2): 234-240. | |
[15] | Yang J M, Liu D H, Liu J. Thermal effects of Yb3+:Y2SiO5 lasers [J]. Chinese Journal of Quantum Electronics, 2013, 30(3): |
29 | 3-297. |
杨济民, 刘丹华, 刘杰. 掺镱硅酸钇晶体的激光热效应研究[J]. 量子电子学报, 2013, 30(3): 293-297. | |
[16] | Nuernisha Alifu, Jin C J. LSPR-enhanced upconversion luminescence of NaYF4:Yb, Er nanoparticles and its application [J]. |
Chinese Journal of Quantum Electronics, 2013, 30(6): 641-650. | |
努尔尼沙•阿力甫, 金崇君. 基于局域表面等离子体增强的NaYF4:Yb, Er 荧光上转换及其应用[J]. 量子电子学报, 2013, | |
30 | (6): 641-650. |
[17] | Zhao H Y, Yi Y T, Wang X, et al. Triple-wavelength lasing at 1.50 μm, 1.84 μm and 2.08 μm in a Ho3+/Tm3+ co-doped |
fluorozirconate glass microsphere [J]. Journal of Luminescence, 2019, 219: 116889. | |
[18] | Hu M Y, Wang Y, You Z Y, et al. Influence of codoped Gd3+ ions on the spectroscopic site symmetry of Dy3+ ions in LaF3 |
single crystals [J]. Journal of Materials Chemistry C, 2019, 7(43): 13432-13439. | |
[19] | Hu M Y, Wang Y, Zhu Z J, et al. Investigation of mid-IR luminescence properties in Dy3+/Tm3+-codoped LaF3 single crystals |
[J] | Journal of Luminescence, 2019, 207: 226-230. |
[20] | Ma M J, Ye B, Ma X M, et al. Electro-optically Q-switched 2.94 μm Er:YAG laser and its applications [J]. Chinese Journal of |
Quantum Electronics, 2010, 27(6): 688-692. | |
马明俊, 叶兵, 麻晓敏, 等. 2.94 μm Er:YAG 电光调Q 激光器及应用研究[J]. 量子电子学报, 2010, 27(6): 688-692. | |
[21] | Wei H B, Guo Q, Zhu C J, et al. Characterization of Er3+ 2.79 μm rotating mirror Q-switched laser [J]. Chinese Journal of |
Quantum Electronics, 2014, 31(5): 563-568. | |
魏昊波, 郭强, 朱成君, 等. Er3+ 2.79 μm 激光器转镜调Q 系统特性分析[J]. 量子电子学报, 2014, 31(5): 563-568. | |
[22] | Huang L, Guo Q, Luo J Q, et al. Spectroscopic properties analysis and laser characteristic simulation of Er:GSGG crytsal [J]. |
Chinese Journal of Quantum Electronics, 2012, 29(1): 45-51. | |
黄荔, 郭强, 罗建乔, 等. Er:GSGG 晶体的光谱性质分析及激光特性模拟研究[J]. 量子电子学报, 2012, 29(1): 45-51. | |
[23] | Zhou P Y, Zhang Q L, Ning K J, et al. Preparation, structual and spectral properties of LaLu0.7Er0.3O3 polycrystalline [J]. |
Chinese Journal of Quantum Electronics, 2013, 30(2): 162-168. | |
周鹏宇, 张庆礼, 宁凯杰, 等. LaLu0.7Er0.3O3 纳米多晶的制备、结构和光谱特性[J]. 量子电子学报, 2013, 30(2): 162-168. | |
[24] | Hu J L, Wang H L, Liang X T, et al. Progress of multiscale materials crystallization [J]. Scientia Sinica Technologica, 2020, |
50 | (6): 650-666. |
胡家乐, 王汇霖, 梁晰童, 等. 材料多尺度结晶研究进展[J]. 中国科学: 技术科学, 2020, 50(6): 650-666. | |
[25] | Sun C T, Xue D F. Perspectives of multiscale rare earth crystal materials [J]. CrystEngComm, 2019, 21: 1838. |
[26] | Sun C T, Xue D F. Crystal growth: An anisotropic mass transfer process at the interface [J]. Physical Chemistry Chemical |
Physics, 2017, 19: 12407-12413. | |
[27] | Ye X Y, Luo Y, Liu S B, et al. Experimental study and thermodynamic calculation of Lu2O3-SiO2 binary system [J]. Journal |
of Rare Earths, 2017, 35(9): 927-933. | |
[28] | Tu C Y, Zhu Z J, Li J F, et al. GdAl3(BO3)4 and its Nd-activated ion doped frequency-doubled and self-converting laser crystal |
[J] | Journal of Synthetic Crystals, 2019, 48(10): 1843-1853. |
涂朝阳, 朱昭捷, 李坚富, 等. GdAl3(BO3)4 和Nd 离子掺杂的倍频与自变频激光晶体研究[J]. 人工晶体学报, 2019, | |
48 | (10): 1843-1853. |
[29] | Sastry B S R, Hummel F A. Studies in lithium oxide systems: I Li2O-Li2O·B2O3 [J]. Journal of the American Ceramic Society, |
20 | 10, 42(5): 216-218. |
[30] | Tu H, Hu Z G, Zhao Y, et al. Growth of large aperture LBO crystal applied in high power OPCPA schemes [J]. Journal of |
Crystal Growth, 2020, 546: 125728. | |
[31] | Lian Y S, Wang Y, Li J F, et al. Structural and fluorescence features of Dy3+:Y4Al2O9 phosphors for yellow color emitting |
displays [J]. Vacuum, 2020, 173: 109165. | |
[32] | Cai X Y, Wang Y, Li J F, et al. Crystal growth and spectroscopic investigations of Dy:YAlO3 and Dy, Tm:YAlO3 crystals for 3 |
μm laser application [J]. Journal of Luminescence, 2020, 225: 117328. | |
[33] | Cai X Y, Wang Y, Li J F, et al. Enhanced broadband 3 μm emission in Yb3+/Dy3+:YAlO3 crystal under 979 nm excitation [J]. |
Vacuum, 2020, 181: 109647. | |
[34] | Olga F, Hans J, Thomas L, et al. The assessment of thermodynamic parameters in the Al2O3-Y2O3 system and phase relations |
in the Y-Al-O system [J]. Scandinavian Journal of Metallurgy, 2001, 30: 175-183. | |
[35] | Xue D F. Design and simulation of crystal materials [J]. Journal of Synthetic Crystals, 2007, 36(4): 743-749. |
薛冬峰. 晶体材料的设计与模拟[J]. 人工晶体学报, 2007, 36(4): 743-749. | |
[36] | Sun C T, Xue D F. Chemical bonding theory of single crystal growth and its application to fast single crystal growth of rare |
earth inorganic materials [J]. Scientia Sinica Chimica, 2018, 48(8): 804-814. | |
孙丛婷, 薛冬峰. 结晶生长的化学键合理论及其在稀土晶体快速生长中的应用[J]. 中国科学: 化学, 2018, 48(8): 804-814. | |
[37] | Xue D F, Sun C T. The growth of low-cost rare-earth scintillation crystals [P]. China Patent: CN105714374A, 2016. |
[38] | Xue D F, Sun C T. Rare earth scintillation crystal prepared by using low cost rare earth material and its low cost growth process |
[P] | China Patent: CN105543963A, 2016. |
[39] | Sun C T, Xue D F. Chemical bonding theory of single crystal growth and its application to ϕ3′′ YAG bulk crystal [J]. CrystEngComm, |
20 | 14, 16: 2129-2135. |
[40] | Yang G L, Han J F, Li X W, et al. Growth of 8 inch Yb:YAG single crystal by Czochralski method [J]. Journal of Synthetic |
Crystals, 2019, 48(7): 1216-1217. | |
杨国利, 韩剑锋, 李兴旺, 等. 提拉法生长直径8 inch Yb:YAG 激光晶体[J]. 人工晶体学报, 2019, 48(7): 1216-1217. | |
[41] | Li N, Liu B, Shi J J, et al. Research progress of rare-earth doped laser crystals in visible region [J]. Journal of Inorganic |
Materials, 2019, 34(6): 573-589. | |
李纳, 刘斌, 施佼佼, 等. 可见光波段稀土激光晶体的研究进展[J]. 无机材料学报, 2019, 34(6): 573-589. | |
[42] | Yu H. Investigation on Spectral Properties and Visible Laser Performance of Re (Pr, Eu, Dy) Doped Calcium Fluoride Crystals |
[D] | Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2019. |
于浩. Re (Pr, Eu, Dy):CaF2 晶体光谱与可见光激光性能研究[D]. 上海: 中国科学院上海硅酸盐研究所, 2019. | |
[43] | Zhang Y X. Exploration of Pr3+ Ion Doped Laser Crystals and Their Pulse Laser Characterization Pumped by Blue Semiconductor |
[D] | Jinan: Shandong University, 2019. |
张玉霞. 掺镨离子激光晶体探索及其蓝光半导体直接泵浦脉冲激光特性研究[D]. 济南: 山东大学, 2019. | |
[44] | Ju Q J, Shen H, Yao W M, et al. Laser diode pumped Dy:YAG yellow laser [J]. Chinese Journal of Laser, 2017, 44(4): 23-28. |
鞠乔俊, 沈华, 姚文明, 等. 半导体激光抽运Dy: YAG 黄光激光器[J]. 中国激光, 2017, 44(4): 23-28. | |
[45] | Li C L, Yao W M, Chen J S, et al. All-solid-state yellow-laser characteristics based on co-doped Dy-Tb:YAG crystal [J]. |
Chinese Journal of Laser, 2019, 46(11): 61-66. | |
李长磊, 姚文明, 陈建生, 等. 基于共掺杂Dy-Tb: YAG 晶体的全固态黄光激光特性研究[J]. 中国激光, 2019, 46(11): | |
61 | -66. |
[46] | Nie H K. Study on 3 μm Band Laser Characteristics of Ho3+, Pr3+ Co-doped Fluoride Crystal [D]. Jinan: Shandong University, |
2020. | |
聂鸿坤. Ho3+, Pr3+ 共掺氟化物晶体3 μm 波段激光特性研究[D]. 济南: 山东大学, 2020. | |
[47] | Zhang P X, Li S M, Yang Y L, et al. Growth and performance optimization of mid-infrared fluoride laser crystal [J]. Journal |
of Synthetic Crystals, 2020, 49(8): 1369-1378. | |
张沛雄, 李善明, 杨依伦, 等. 中红外氟化物激光晶体的生长和性能优化研究[J]. 人工晶体学报, 2020, 49(8): 1369-1378. | |
[48] | Tao X T, Wang S P, Wang L, et al. Research in crystal materials: From bulk crystals to micro-nano crystals [J]. Journal of |
Synthetic Crystals, 2019, 48(5): 763-786. | |
陶绪堂, 王善朋, 王蕾, 等. 晶体材料研究-从体块晶体到微纳米晶体[J]. 人工晶体学报, 2019, 48(5): 763-786. | |
[49] | Ren G H. Development history of inorganic scintillation crystals in China [J]. Journal of Synthetic Crystals, 2019, 48(8): 1373- |
1385. | |
任国浩. 无机闪烁晶体在我国的发展史[J]. 人工晶体学报, 2019, 48(8): 1373-1385. | |
[50] | Zhang M R. Research status and development trend of non-fluorinated halide scintillation crystals [J]. Journal of Synthetic |
Crystals, 2020, 49(5): 753-770. | |
张明荣. 非氟卤化物闪烁晶体的研究现状和发展趋势[J]. 人工晶体学报, 2020, 49(5): 753-770. | |
[51] | Meng M, Qi Q, He C J, et al. Influence of defects on the luminescence properties of Gd3(Al, Ga)5O12:Ce scintillation crystals |
[J] | Acta Physical Sinica, DOI: 10.7498/aps.70.20201697 |
孟猛, 祁强, 赫崇君, 等. Gd3(Al, Ga)5O12: Ce 闪烁晶体缺陷对其发光性能的影响[J]. 物理学报. | |
DOI:10.7498/aps.70.20201697. | |
[52] | Shinozaki K, Okada G, Sato K, et al. Impact of crystallization method on the strain, defect formation, and thermoluminescence |
of YAG:Ce crystals [J]. Journal of Alloys Compounds, 2020, 849: 156600. | |
[53] | Lee S, Kim K Y, Lee M S, et al. Recovery of inter-detector and inter-crystal scattering in brain PET based on LSO and GAGG |
crystals [J]. Physics in Medicine & Biology, 2020, 65(19): 195005. | |
[54] | Wang Q Q, Shi J, Li H Y, et al. Optical and scintillation properties of Cs2LiYCl6:Ce crystal [J]. Journal of Inorganic Materials, |
20 | 17, 32(2): 175-179. |
王晴晴, 史坚, 李焕英, 等. Cs2LiYCl6:Ce 闪烁晶体的光学及闪烁性能[J]. 无机材料学报, 2017, 32(2): 175-179. | |
[55] | Wang S H, Wu Y T, Li H Y, et al. Effect of Ce3+ doping concentration on scintillation performance of Cs2LiYCl6 crystal [J]. |
Journal of the Chinese Society of Rare Earths, 2020, 38(6): 759-767. | |
王绍涵, 吴云涛, 李焕英, 等. Ce3+ 掺杂浓度对Cs2LiYCl6 晶体闪烁性能的影响[J]. 中国稀土学报, 2020, 38(6): 759-767. | |
[56] | Pan S K, Zhang P, Zhu H B, et al. Crystal growth, luminescence and scintillation properties of mixed Ce:Cs2LiLaxY1−xCl6 |
(0 < x ≤ 0.4) scintillators [J]. Journal of Luminescence, 2018, 201: 211-216. | |
[57] | Yu Y Y, Zhu H B,Wang H Y, et al. Growth and scintillation properties of RbY2Cl7:Ce crystal [J]. Journal of Synthetic Crystals, |
20 | 20, 49(5): 780-784. |
俞云耀, 朱贺炳, 王昊宇, 等. RbY2Cl7:Ce 晶体的生长和闪烁性能研究[J]. 人工晶体学报, 2020, 49(5): 780-784. | |
[58] | Feofilov S P, Kulinkin A B. Anti-Stokes fluorescence of Cr3+ ions doped crystals excited in one-phonon vibronic sidebands [J]. |
Optical Materials, 2019, 94: 231-236. | |
[59] | Mobini E, Rostami S, Peysokhan M, et al. Laser cooling of ytterbium-doped silica glass [J]. Communications Physics, 2020, |
3( | 1): 1-6. |
[60] | Seletskiy D, Melgaard S, Bigotta S, et al. Laser cooling of solids to cryogenic temperatures [J]. Nature Photonics, 2010, 4(3): |
16 | 1-164. |
[61] | Rahman A T M A, Barker P F. Laser refrigeration, alignment and rotation of levitated Yb3+:YLF nanocrystals [J]. Nature |
Photonics, 2017, 11(10): 634-638. | |
[62] | Zhong B, Lei Y Q, Luo H, et al. Laser cooling of the Yb3+-doped LuLiF4 single crystal for optical refrigeration [J]. Journal of |
Luminescence, 2020, 226: 117472. | |
[63] | Loiko P, Doualan J L, Guillemot L, et al. Emission properties of Tm3+-doped CaF2, KY3F10, LiYF4, LiLuF4 and BaY2F8 |
crystals at 1.5 μm and 2.3 μm [J]. Journal of Luminescence, 2020, 225: 117279. | |
[64] | Wang J Q. Study on Photoluminescence Characteristics of High Brightness Solid-state Green Light [D]. Chongqing: |
Chongqing University, 2019. | |
王家庆. 高亮度固态绿光光源光致发光特性研究[D]. 重庆: 重庆大学, 2019. | |
[65] | Pan F L, Cao D H, Guo X C, et al. High-lumen-density light source based on Ce:YAG fluorescent crystal [J]. Laser & |
Optoelectronics Progress, 2019, 56(21): 188-193. | |
潘富林, 曹顿华, 郭向朝, 等. 基于Ce:YAG 荧光晶体的高流明密度光源[J]. 激光与光电子学进展, 2019, 56(21): 188-193. | |
[66] | Hu P, Ding H, Liu Y F, et al. Recent progress of YAG:Ce3+ for white laser diode lighting application [J]. Chinese Journal of |
Luminescence, 2020, 41(12): 1504-1528. | |
胡盼, 丁慧, 刘永福, 等. YAG: Ce3+ 在激光照明应用中的研究进展[J]. 发光学报, 2020, 41(12): 1504-1528. | |
[67] | LYU Q Y, Xue B G,Wang T T, et al. Research progress of YAG:Ce fluorescent films for white lighting [J]. Chinese Journal of |
Luminescence, 2020, 41(11): 1323-1334. | |
吕清洋, 薛秉国, 王婷婷, 等. 白光照明用YAG: Ce 荧光薄膜研究进展[J]. 发光学报, 2020, 41(11): 1323-1334. | |
[68] | Zheng Z H, Zhang X, Xu X K, et al. Thickness and surface roughness effect on lighting performance of Ce3+:YAG transparent |
ceramics based high power LED and LD lighting prototype devices [J]. Chinese Journal of Luminescence, 2020, 41(11): 1411- | |
1420. | |
郑哲涵, 张翔, 徐小科, 等. 基于Ce3+:YAG 透明陶瓷的大功率LED 和LD 照明原型器件的发光性能:厚度和表面粗糙 | |
度的影响[J]. 发光学报, 2020, 41(11): 1411-1420. | |
[69] | Guo J Y, Tudi A, Han S J, et al. Sn2B5O9Cl: A material with large birefringence enhancement activated prepared via alkalineearth- |
metal substitution by Tin [J]. Angewandte Chemie International Edition, 2019, 58(49): 1-5. |
[1] | 张艳琳, 游利兵, 王宏伟, 王琪, 胡泽雄, 范军, 方晓东, . 深紫外飞秒激光脉宽测量[J]. 量子电子学报, 2023, 40(4): 469-475. |
[2] | 张震, 段典, 陈雨君, 魏珊珊, 马金栋, 姚波, 毛庆和 . 基于窄带耗散孤子Figure-9 光纤振荡器和单级 单模光纤放大器的皮秒脉冲光纤前端[J]. 量子电子学报, 2023, 40(4): 476-482. |
[3] | 唐敬玲, 齐月, 白振旭, 齐瑶瑶, 丁洁, 颜秉政, 王雨雷, 吕志伟, . 基于YAG/Nd: YAG/Cr4+: YAG 键合晶体 的被动调Q亚纳秒激光器[J]. 量子电子学报, 2023, 40(4): 483-491. |
[4] | 王 长, ∗ , 宋高辉, , 谭智勇, , 曹俊诚, ∗. 基于半导体光子学器件的太赫兹成像技术研究进展 (封面文章}[J]. 量子电子学报, 2023, 40(2): 181-192. |
[5] | 陈雨君 姚波 刘昊炜 魏珊珊 毛庆和. 基于石英玻璃掺铥光纤的单纵模 DBR 光纤激光器的研制[J]. 量子电子学报, 2023, 40(1): 56-61. |
[6] | 魏士钦 王瑶 王梦真 王芳 刘俊杰 刘玉怀. 基于阱式阶梯电子阻挡层的深紫外激光二极管性能研究[J]. 量子电子学报, 2023, 40(1): 62-68. |
[7] | 胡泽雄, 游利兵, ∗, 寸 超, 王宏伟, 范 军, 王 琪, 张艳琳, 方晓东. 准分子激光低抖动延时同步系统[J]. 量子电子学报, 2023, 40(1): 69-78. |
[8] | 钟玉龙, 程庭清∗. LD 侧面泵浦 Tm:YAG 电光调 Q 激光的实验研究[J]. 量子电子学报, 2022, 39(5): 736-741. |
[9] | 张 超, 韩亚帅, 周正仙, 屈 军∗. 扭曲厄米-高斯-谢尔模光束对两种 瑞利粒子的捕获[J]. 量子电子学报, 2022, 39(5): 742-751. |
[10] | 张艳琳, 游利兵, ∗, 王宏伟, 王 琪, 胡泽雄, 范 军, 方晓东, . 紫外超短脉冲的准分子激光放大技术[J]. 量子电子学报, 2022, 39(5): 677-686. |
[11] | 张 瑞, 梅大江, ∗, 石小兔, 马荣国, 张庆礼, ∗, 窦仁勤, 刘文鹏, . YAG 晶体的位错研究进展[J]. 量子电子学报, 2022, 39(5): 687-706. |
[12] | 杨浩, 滕浩, ∗, 吕仁冲, 朱江峰∗, 魏志义, . 基于同心展宽器的飞秒啁啾脉冲放大研究[J]. 量子电子学报, 2022, 39(4): 566-573. |
[13] | 康仁铸, 吕仁冲, 滕浩, 朱江峰, 魏志义, . 基于改进的Frantz-Nodvik 方程的 Yb: KGW 再生放大器研究[J]. 量子电子学报, 2022, 39(4): 574-582. |
[14] | 张傲翔, 王瑶, 王梦真, 魏士钦, 王芳, 刘玉怀, . 具有M 形空穴阻挡层结构的AlGaN 基 深紫外激光二极管性能优化[J]. 量子电子学报, 2022, 39(4): 583-590. |
[15] | 李晨睿, 李香乐, 应佳峻, 吴怡童, 盛雨齐, 周勇, 高伟清. 无拍频1570 nm 光纤激光器及其在 2 m 波段激光产生中的应用[J]. 量子电子学报, 2022, 39(4): 591-597. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||